Advertisement

Climate Dynamics

, Volume 51, Issue 3, pp 915–932 | Cite as

Impact of model resolution and Mediterranean sea coupling on hydrometeorological extremes in RCMs in the frame of HyMeX and MED-CORDEX

  • G. Panthou
  • M. Vrac
  • P. Drobinski
  • S. Bastin
  • L. Li
Article

Abstract

In this study, we are interested in evaluating the potential improvement of: (i) coupled RCM simulations (with the Mediterranean sea) in comparison with atmosphere only (stand-alone) RCM simulations and (ii) RCM simulations at a finer resolution in comparison with coarser resolution. For that, three different RCMs (WRF, ALADIN, LMDZ4) were run, forced by ERA-Interim reanalyses, within the HyMeX/Med-CORDEX experiments. For each RCM, different versions (coupled/stand-alone, high/low resolution) were realized. This study focuses on extreme meteorological events (hot days, droughts and heavy precipitation) and evaluates the current RCM simulations in terms of return levels associated with these events. Additionally, a large set of indicators is proposed in order to better understand the performances of RCM simulations. These indicators were applied for three variables (daily precipitation amount, mean daily 2-m air temperature and dry spell length). Results show that the differences between coupled and stand-alone RCMs are localized very near the Mediterranean sea. For hot days and droughts statistics, high resolution runs display better performances than low resolution runs. The expected improvement for extreme precipitation with higher resolution runs was not observed in this study.

Keywords

Mediterranean climate Extreme hydro-meteorological events RCM simulations Evaluation of climate simulations 

Notes

Acknowledgments

This work is a contribution to the HyMeX program (HYdrological cycle in The Mediterranean EXperiment) through INSU-MISTRALS support and the MEDCORDEX program (COordinated Regional climate Downscaling EXperiment-Mediterranean region). This research has received funding from the French National Research Agency (ANR) projects REMEMBER (contract ANR-12-SENV-001) and StaRMIP (grant agreement ANR-12-JS06-0005-01) and is part of the GICC REMedHE project (2012–2015) funded by the French Ministry of Ecology, Sustainable Development and Energy. It was supported by the IPSL group for regional climate and environmental studies, with granted access to the HPC resources of IDRIS (under allocation i2011010227). It is also a contribution to the GEWEX program of the World Climate Research Program (WCRP) (GEWEX Hydroclimate Panel). Authors acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu).

Supplementary material

382_2016_3374_MOESM1_ESM.pdf (16.9 mb)
Supplementary material 1 (pdf 17323 KB)

References

  1. Alpert P, Ben-gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R, Michaelides S, Manes A (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(11):1–4Google Scholar
  2. Bacmeister J, Wehner M, Neale R, Gettelman A, Hannay C, Lauritzen P, Caron J, Truesdale J (2014) Exploratory high-resolution climate simulations using the community atmosphere model (CAM). J Clim 27(9):3073–3099Google Scholar
  3. Barrera-Escoda A, Gonçalves M, Guerreiro D, Cunillera J, Baldasano J (2014) Projections of temperature and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971–2050). Clim Change 122(4):567–582Google Scholar
  4. Berthou S, Mailler S, Drobinski P, Arsouze T, Bastin S, Béranger K, Lebeaupin-Brossier C (2014) Prior history of Mistral and Tramontane winds modulates heavy precipitation events in southern France. Tellus A 66:24064Google Scholar
  5. Berthou S, Mailler S, Drobinski P, Arsouze T, Bastin S, Béranger K, Lebeaupin-Brossier C (2015) Sensitivity of an intense rain event between atmosphere-only and atmosphere–ocean regional coupled models: 19 September 1996. Q J R Meteorol Soc 141(686):258–271Google Scholar
  6. Beuvier J, Sevault F, Herrmann M, Kontoyiannis H, Ludwig W, Rixen M, Stanev E, Béranger K, Somot S (2010) Modeling the Mediterranean sea interannual variability during 1961–2000: focus on the Eastern Mediterranean Transient. J Geophys Res Oceans 115(C8):C08,017Google Scholar
  7. Beuvier J, Béranger K, Lebeaupin Brossier C, Somot S, Sevault F, Drillet Y, Bourdallé-Badie R, Ferry N, Lyard F (2012) Spreading of the Western Mediterranean Deep Water after winter 2005: time scales and deep cyclone transport. J Geophys Res Oceans 117(C07):022Google Scholar
  8. Bonnifait L, Delrieu G, Le Lay M, Boudevillain B, Masson A, Belleudy P, Gaume E, Saulnier GM (2009) Distributed hydrologic and hydraulic modelling with radar rainfall input: Reconstruction of the 8–9 September 2002 catastrophic flood event in the Gard region, France. Adv Water Resour 32(7):1077–1089Google Scholar
  9. Bony S, Emanuel K (2001) A parameterization of the cloudiness associated with cumulus convection; evaluation using TOGA COARE data. J Atmos Sci 58(21):3158–3183Google Scholar
  10. Boone A, Calvet JC, Noilhan J (1999) Inclusion of a third soil layer in a land surface scheme using the force-restore method. J Appl Meteorol 38(11):1611–1630Google Scholar
  11. Bougeault P (1985) A simple parameterization of the large-scale effects of cumulus convection. Mon Weather Rev 113(12):2108–2121Google Scholar
  12. Brauch H (2003) Urbanization and natural disasters in the Mediterranean: population growth and climate change in the 21st Century, Building Safer, Cities p 149Google Scholar
  13. Chan S, Kendon E, Fowler H, Blenkinsop S, Ferro C, Stephenson D (2013) Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Clim Dyn 41(5–6):1475–1495Google Scholar
  14. Coles S (2001) An introduction to statistical modeling of extreme values. Springer, LondonGoogle Scholar
  15. Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in Limited Area Model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus A 62(5):591–604Google Scholar
  16. Crétat J, Pohl B, Richard Y, Drobinski P (2011) Uncertainties in simulating regional climate of Southern Africa: sensitivity to physical parameterizations using WRF. Clim Dyn 38(3–4):613–634Google Scholar
  17. Decharme B, Douville H (2006) Introduction of a sub-grid hydrology in the ISBA land surface model. Clim Dyn 26(1):65–78Google Scholar
  18. Decharme B, Douville H, Boone A, Habets F, Noilhan J (2006) Impact of an exponential profile of saturated hydraulic conductivity within the ISBA LSM: simulations over the Rhône Basin. J Hydrometeorol 7(1):61–80Google Scholar
  19. Decharme B, Alkama R, Douville H, Becker M, Cazenave A (2010) Global evaluation of the ISBA-TRIP continental hydrological system. Part II: Uncertainties in river routing simulation related to flow velocity and groundwater storage. J Hydrometeorol 11(3):601–617Google Scholar
  20. Dee D, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J R Meteorol Soc 135(644):1830–1841Google Scholar
  21. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kallberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597Google Scholar
  22. Deser C, Phillips A, Bourdette V, Teng H (2010) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546Google Scholar
  23. Deser C, Knutti R, Solomon S, Phillips AS (2012) Communication of the role of natural variability in future North American climate. Nat Clim Change 2(11):775–779Google Scholar
  24. Di Luca A, de Elía R, Laprise R (2012) Potential for added value in precipitation simulated by high-resolution nested Regional Climate Models and observations. Clim Dyn 38(5–6):1229–1247Google Scholar
  25. Diaconescu E, Gachon P, Laprise R (2015) On the remapping procedure of daily precipitation statistics and indices used in regional climate model evaluation. J Hydrometeorol 16(6):2301–2310Google Scholar
  26. Drobinski P, Anav A, Lebeaupin Brossier C, Samson G, Stéfanon M, Bastin S, Baklouti M, Béranger K, Beuvier J, Bourdallé-Badie R, Coquart L, D’Andrea F, de Noblet-Ducoudré N, Diaz F, Dutay JC, Ethe C, Foujols MA, Khvorostyanov D, Madec G, Mancip M, Masson S, Menut L, Palmieri J, Polcher J, Turquety S, Valcke S, Viovy N (2012) Model of the Regional Coupled Earth system (MORCE): application to process and climate studies in vulnerable regions. Environ Model Softw 35:1–18Google Scholar
  27. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Boubrahmi NF, Font J, Grubišić V, Gualdi S, Homar V, Ivančan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: a 10-year multidisciplinary program on the mediterranean water cycle. Bull Am Meteorol Soc 95(7):1063–1082Google Scholar
  28. Ducrocq V, Ricard D, Lafore J, Orain F (2002) Storm-scale numerical rainfall prediction for five precipitating events over France: on the importance of the initial humidity field. Weather Forecast 17(6):1236–1256Google Scholar
  29. Ducrocq V, Nuissier O, Ricard D, Lebeaupin C, Thouvenin T (2008) A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors. Q J R Meteorol Soc 134(630):131–145Google Scholar
  30. Efron B, Tibshirani R (1994) An introduction to the bootstrap. Chapman & Hall, New YorkGoogle Scholar
  31. Efthymiadis D, Goodess C, Jones P (2011) Trends in Mediterranean gridded temperature extremes and large-scale circulation influences. Nat Hazards Earth Syst Sci 11(8):2199–2214Google Scholar
  32. Emanuel K (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48(21):2313–2329Google Scholar
  33. Emanuel K (1993) A cumulus representation based on the episodic mixing model: the importance of mixing and microphysics in predicting humidity. AMS Meteorol Monogr 24(46):185–192Google Scholar
  34. Farda A, Déué M, Somot S, Horányi A, Spiridonov V, Tóth H (2010) Model ALADIN as regional climate model for Central and Eastern Europe. Stud Geophys Geod 54(2):313–332Google Scholar
  35. Fischer E, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn 33(7–8):917–935Google Scholar
  36. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20(20):5081–5099Google Scholar
  37. Flaounas E, Bastin S, Janicot S (2010) Regional climate modelling of the 2006 West African monsoon: sensitivity to convection and planetary boundary layer parameterisation using WRF. Clim Dyn 36(5–6):1083–1105Google Scholar
  38. Flaounas E, Drobinski P, Borga M, Calvet JC, Delrieu G, Morin E, Tartari G, Toffolon R (2012) Assessment of gridded observations used for climate model validation in the Mediterranean region: the HyMeX and MED-CORDEX framework. Environ Res Lett 7(2):024,017Google Scholar
  39. Fosser G, Khodayar S, Berg P (2014) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44:45–60Google Scholar
  40. Gao X, Pal J, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from a high resolution double nested RCM simulation. Geophys Res Lett 33(3):L03706Google Scholar
  41. Garcia-Diez M, Fernández J, Fita L, Yagüe C (2013) Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Q J R Meteorol Soc 139(671):501–514Google Scholar
  42. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(8):L08707Google Scholar
  43. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63(2–3):90–104Google Scholar
  44. Giorgi F, Jones C, Asrar G (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorological Organization (WMO). Bulletin 58(3):175Google Scholar
  45. Giorgi F, Im ES, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher hydroclimatic intensity with global warming. J Clim 24(20):5309–5324Google Scholar
  46. Godart A, Anquetin S, Leblois E, Creutin JD (2011) The contribution of orographically driven banded precipitation to the rainfall climatology of a Mediterranean region. J Appl Meteorol Climatol 50(11):2235–2246Google Scholar
  47. Güttler I, Branković V, O’Brien T, Coppola E, Grisogono B, Giorgi F (2014) Sensitivity of the regional climate model RegCM4. 2 to planetary boundary layer parameterisation. Clim Dyn 43(7–8):1753–1772Google Scholar
  48. Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Change 19(2):240–247Google Scholar
  49. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107Google Scholar
  50. Haylock MR, Goodess CM (2004) Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int J Climatol 24(6):759–776Google Scholar
  51. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119Google Scholar
  52. Herrera S, Gutiérrez JM, Ancell R, Pons MR, Frías MD, Fernández J (2012) Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32(1):74–85Google Scholar
  53. Herrmann M, Somot S, Calmanti S, Dubois C, Sevault F (2011) Representation of spatial and temporal variability of daily wind speed and of intense wind events over the Mediterranean sea using dynamical downscaling: impact of the regional climate model configuration. Nat Hazards Earth Syst Sci 11:1983–2001Google Scholar
  54. Hofstra N, Haylock M, New M, Jones P (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res Atmos 114(D21):101Google Scholar
  55. Hofstra N, New M, McSweeney C (2010) The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim Dyn 35(5):841–858Google Scholar
  56. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134(9):2318–2341Google Scholar
  57. Hosking J, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press, CambridgeGoogle Scholar
  58. Hourdin F, Musat I, Bony S, Braconnot P, Codron F, Dufresne JL, Fairhead L, Filiberti MA, Friedlingstein P, Grandpeix JY (2006) The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim Dyn 27(7–8):787–813Google Scholar
  59. Huntington T (2006) Evidence for intensification of the global water cycle: review and synthesis. J Hydrol 319(1–4):83–95Google Scholar
  60. Jacob D, Petersen J, Eggert B, Alias A, Christensen O, Bouwer L, Braun A, Colette A, Déqué M, Georgievski G, Georgopoulou E, Gobiet A, Menut L, Nikulin G, Haensler A, Hempelmann N, Jones C, Keuler K, Kovats S, Kröner N, Kotlarski S, Kriegsmann A, Martin E, van Meijgaard E, Moseley C, Pfeifer S, Preuschmann S, Radermacher C, Radtke K, Rechid D, Rounsevell M, Samuelsson P, Somot S, Soussana J, Teichmann C, Valentini R, Vautard R, Weber B, Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578Google Scholar
  61. Jousse A, Hall A, Sun F, Teixeira J (2016) Causes of WRF surface energy fluxes biases in a stratocumulus region. Clim Dyn 46(1–2):571–584Google Scholar
  62. Kain J (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181Google Scholar
  63. Kendon E, Roberts N, Senior C, Roberts M (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25(17):5791–5806Google Scholar
  64. Kjellström E, Döscher R, Meier H (2005) Atmospheric response to different sea surface temperatures in the Baltic Sea: coupled versus uncoupled regional climate model experiments. Nord Hydrol 36:397–409Google Scholar
  65. Klok E, Klein Tank A (2009) Updated and extended European dataset of daily climate observations. Int J Climatol 29(8):1182–1191Google Scholar
  66. Kuglitsch FG, Toreti A, Xoplaki E, Della-Marta PM, Zerefos CS, Türkeş M, Luterbacher J (2010) Heat wave changes in the eastern Mediterranean since 1960. Geophys Res Lett 37(4):L04,802Google Scholar
  67. Kyselý J, Plavcová E (2010) A critical remark on the applicability of E-OBS European gridded temperature data set for validating control climate simulations. J Geophys Res Atmos 115(D23):118Google Scholar
  68. Lavaysse C, Vrac M, Drobinski P, Lengaigne M, Vischel T (2012) Statistical downscaling of the French Mediterranean climate: assessment for present and projection in an anthropogenic scenario. Nat Hazards Earth Syst Sci 12(3):651–670Google Scholar
  69. Lebeaupin C, Ducrocq V, Giordani H (2006) Sensitivity of torrential rain events to the sea surface temperature based on high-resolution numerical forecasts. J Geophys Res Atmos 111(D12):110Google Scholar
  70. Lebeaupin-Brossier C, Béranger K, Deltel C, Drobinski P (2011) The Mediterranean response to different space–time resolution atmospheric forcings using perpetual mode sensitivity simulations. Ocean Model 36(1):1–25Google Scholar
  71. Lebeaupin-Brossier C, Drobinski P, Béranger K, Bastin S, Orain F (2013) Ocean memory effect on the dynamics of coastal heavy precipitation preceded by a mistral event in the northwestern Mediterranean. Q J R Meteorol Soc 139(675):1583–1597Google Scholar
  72. Lebeaupin-Brossier C, Bastin S, Béranger K, Drobinski P (2015) Regional mesoscale air–sea coupling impacts and extreme meteorological events role on the Mediterranean sea water budget. Clim Dyn 44(3–4):1029–1051Google Scholar
  73. Lenderink G (2010) Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations. Clim Res 44(2–3):151–166Google Scholar
  74. L’Hévéder B, Li L, Sevault F, Somot S (2013) Interannual variability of deep convection in the Northwestern Mediterranean simulated with a coupled AORCM. Clim Dyn 41(3–4):937–960Google Scholar
  75. Li F, Rosa D, Collins W, Wehner M (2012) ‘Super-parameterization’: a better way to simulate regional extreme precipitation? J Adv Model Earth Syst 4(2):1–10Google Scholar
  76. Li J, Heap AD (2014) Spatial interpolation methods applied in the environmental sciences: a review. Environ Model Softw 53:173–189Google Scholar
  77. Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12(4):986–1001Google Scholar
  78. Lucas-Picher P, Wulff-Nielsen M, Christensen J, Adalgeirsdottir G, Mottram R, Simonsen S (2012) Very high resolution regional climate model simulations over Greenland: identifying added value. J Geophys Res 117:D02108Google Scholar
  79. Madec G, NEMO-Team (2008) NEMO ocean engine. Technical report, Institut Pierre-Simon Laplace (IPSL)Google Scholar
  80. Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151:163–187Google Scholar
  81. Nabat P, Somot S, Mallet M, Sevault F, Chiacchio M, Wild M (2014) Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model. Clim Dyn 44(3–4):1127–1155Google Scholar
  82. Nikulin G, Kjellström E, Hansson U, Strandberg G, Ullerstig A (2011) Evaluation and future projections of temperature, precipitation and wind extremes over Europe in an ensemble of regional climate simulations. Tellus A 63(1):41–55Google Scholar
  83. Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the K-profile Model for the Planetary Boundary Layer based on Large Eddy Simulation Data. Bound Layer Meteorol 107(2):401–427Google Scholar
  84. Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117(3):536–549Google Scholar
  85. Nuissier O, Ducrocq V, Ricard D, Lebeaupin C, Anquetin S (2008) A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients. Q J R Meteorol Soc 134(630):111–130Google Scholar
  86. Oki T, Sud Y (1998) Design of Total Runoff Integrating Pathways (TRIP)—a global river channel network. Earth Interact 2(1):1–37Google Scholar
  87. Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a Big-Brother experiment over the European and Mediterranean regions. Clim Dyn 41(9–10):2451–2470Google Scholar
  88. Omrani H, Drobinski P, Dubos T (2015) Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: what should we nudge? Clim Dyn 44(5–6):1627–1644Google Scholar
  89. Osborn TJ (1997) Areal and point precipitation intensity changes: implications for the application of climate models. Geophys Res Lett 24(22):2829–2832Google Scholar
  90. Osborn TJ, Hulme M (1997) Development of a relationship between station and grid-box rainday frequencies for climate model evaluation. J Clim 10(8):1885–1908Google Scholar
  91. Overeem A, Buishand TA, Holleman I, Uijlenhoet R (2010) Extreme value modeling of areal rainfall from weather radar. Water Resour Res 46(9):W09,514Google Scholar
  92. Panthou G, Vischel T, Lebel T, Quantin G, Molinié G (2014) Characterising the space–time structure of rainfall in the Sahel with a view to estimating IDAF curves. Hydrol Earth Syst Sci 18(12):5093–5107Google Scholar
  93. Pauling A, Luterbacher J, Casty C, Wanner H (2005) Five hundred years of gridded high-resolution precipitation reconstructions over Europe and the connection to large-scale circulation. Clim Dyn 26(4):387–405Google Scholar
  94. Prein A, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tölle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig N, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53(2):323–361Google Scholar
  95. Quesada B, Vautard R, Yiou P, Hirschi M, Seneviratne S (2012) Asymmetric European summer heat predictability from wet and dry southern winters and springs. Nat Clim Change 2(10):736–741Google Scholar
  96. Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus A 60(5):898–910Google Scholar
  97. Rajczak J, Pall P, Schär C (2013) Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine Region. J Geophys Res Atmos 118(9):3610–3626Google Scholar
  98. Rebora N, Molini L, Casella E, Comellas A, Fiori E, Pignone F, Siccardi F, Silvestro F, Tanelli S, Parodi A (2013) Extreme rainfall in the mediterranean: what can we learn from observations? J Hydrometeorol 14(3):906–922. doi: 10.1175/JHM-D-12-083.1 Google Scholar
  99. Ricard J, Royer J (1993) A statistical cloud scheme for use in an AGCM. Ann Geophys 11:1095–1115Google Scholar
  100. Ruti P, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Aznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloché S, Brauch J, Cabos W, Calmanti S, Calvet JC, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galàn P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jordà G, L’Heveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Maciàs D, Nabat P, Onol B, Raikovic B, Ramage K, Sevault F, Sannino G, Struglia M, Sanna A, Torma C, Vervatis V (2015) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc 97:1187–1208Google Scholar
  101. Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on large and small scales in regional climate modelling: application to the Mediterranean basin. Q J R Meteorol Soc 136(646):170–182Google Scholar
  102. Sanchez E, Gallardo C, Gaertner M, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44(1–4):163–180Google Scholar
  103. Sevault F, Somot S, Alias A, Dubois C, Lebeaupin-Brossier C, Nabat P, Adloff F, Déqué M, Decharme B (2014) A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period. Tellus A 66(23):967Google Scholar
  104. Skamarock W, Klemp J, Dudhia J, Gill D, Barker D, Duda M, Huang XY, Wang W, Powers J (2008) A description of the advanced research WRF version 3. Technical note NCAR/TN-475+STR, NCARGoogle Scholar
  105. Smirnova T, Brown J, Benjamin S (1997) Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon Weather Rev 125(8):1870–1884Google Scholar
  106. Smith R (1990) A scheme for predicting layer clouds and their water content in a general circulation model. Q J R Meteorol Soc 116(492):435–460Google Scholar
  107. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob Planet Change 63(2–3):112–126Google Scholar
  108. Stéfanon M, Drobinski P, d’Andrea F, Lebeaupin-Brossier C, Bastin S (2014) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over Western Europe. Clim Dyn 42(5–6):1309–1324Google Scholar
  109. Szczypta C, Decharme B, Carrer D, Calvet JC, Lafont S, Somot S, Faroux S, Martin E (2012) Impact of precipitation and land biophysical variables on the simulated discharge of European and Mediterranean rivers. Hydrol Earth Syst Sci 16(9):3351–3370Google Scholar
  110. Tanarhte M, Hadjinicolaou P, Lelieveld J (2012) Intercomparison of temperature and precipitation data sets based on observations in the Mediterranean and the Middle East. J Geophys Res Atmos 117(D12):102Google Scholar
  111. Tarolli P, Borga M, Morin E, Delrieu G (2012) Analysis of flash flood regimes in the North-Western and South-Eastern Mediterranean regions. Natl Hazards Earth Syst Sci 12(5):1255–1265Google Scholar
  112. Torma C, Coppola E, Giorgi F, Bartholy J, Pongrácz R (2011) Validation of a high-resolution version of the regional climate model RegCM3 over the Carpathian Basin. J Hydrometeorol 12(1):84–100Google Scholar
  113. Tramblay Y, Ruelland D, Somot S, Bouaicha R, Servat E (2013) High-resolution Med-CORDEX regional climate model simulations for hydrological impact studies: a first evaluation of the ALADIN-Climate model in Morocco. Hydrol Earth Syst Sci 17(10):3721–3739Google Scholar
  114. Trenberth K (2011) Changes in precipitation with climate change. Clim Res 47(1):123–138Google Scholar
  115. Trenberth K, Dai A, Rasmussen R, Parsons D (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217Google Scholar
  116. Uvo C (2003) Analysis and regionalization of northern European winter precipitation based on its relationship with the North Atlantic oscillation. Int J Climatol 23(10):1185–1194Google Scholar
  117. Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6(2):373–388Google Scholar
  118. Vautard R, Yiou P, D’Andrea F, de Noblet N, Viovy N, Cassou C, Polcher J, Ciais P, Kageyama M, Fan Y (2007) Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys Res Lett 34:L07711Google Scholar
  119. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, Halenka T, Karacostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, van Meijgaard E, Nikulin G, Patarčić M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2013) The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim Dyn 41(9–10):2555–2575Google Scholar
  120. Voldoire A, Sanchez-Gomez E, Salas Y, Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40(9–10):2091–2121Google Scholar
  121. Wehner M, Smith R, Bala G, Duffy P (2010) The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim Dyn 34(2–3):241–247Google Scholar
  122. Weisse A, Bois P (2001) Topographic effects on statistical characteristics of heavy rainfall and mapping in the French Alps. J Appl Meteorol 40(4):720–740Google Scholar
  123. Zveryaev I (2004) Seasonality in precipitation variability over Europe. J Geophys Res Atmos 109(D05):103Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • G. Panthou
    • 1
  • M. Vrac
    • 1
  • P. Drobinski
    • 2
  • S. Bastin
    • 3
    • 4
    • 5
  • L. Li
    • 6
  1. 1.IPSL/LSCECNRS/CEA/UVSQGif-sur-YvetteFrance
  2. 2.IPSL/LMDEcole PolytechniquePalaiseauFrance
  3. 3.IPSL/LATMOSUVSQGuyancourtFrance
  4. 4.Sorbonne Universités, UPMCGuyancourtFrance
  5. 5.CNRS/INSUGuyancourtFrance
  6. 6.IPSL/LMD, CNRS/UPMCParisFrance

Personalised recommendations