Climate Dynamics

, Volume 49, Issue 1–2, pp 683–702 | Cite as

Assessment of sea ice-atmosphere links in CMIP5 models

  • Emma J. D. BolandEmail author
  • Thomas J. Bracegirdle
  • Emily F. Shuckburgh


The Arctic is currently undergoing drastic changes in climate, largely thought to be due to so-called ‘Arctic amplification’, whereby local feedbacks enhance global warming. Recently, a number of observational and modelling studies have questioned what the implications of this change in Arctic sea ice extent might be for weather in Northern Hemisphere midlatitudes, and in particular whether recent extremely cold winters such as 2009/10 might be consistent with an influence from observed Arctic sea ice decline. However, the proposed mechanisms for these links have not been consistently demonstrated. In a uniquely comprehensive cross-season and cross-model study, we show that the CMIP5 models provide no support for a relationship between declining Arctic sea ice and a negative NAM, or between declining Barents–Kara sea ice and cold European temperatures. The lack of evidence for the proposed links is consistent with studies that report a low signal-to-noise ratio in these relationships. These results imply that, whilst links may exist between declining sea ice and extreme cold weather events in the Northern Hemisphere, the CMIP5 model experiments do not show this to be a leading order effect in the long-term. We argue that this is likely due to a combination of the limitations of the CMIP5 models and an indication of other important long-term influences on Northern Hemisphere climate.


Sea ice Arctic CMIP5 NAM NAO Barents–Kara sea 



We would like to thank two anonymous reviewers for their useful comments. The authors were supported by the Natural Environment Research Council, UK. The CMIP5 data were accessed via the British Atmospheric Data Centre.

Supplementary material

382_2016_3367_MOESM1_ESM.pdf (220 kb)
Supplementary material 1 (pdf 220 KB)


  1. Ayarzagüena B, Screen JA (2016) Taking the chill off: future arctic sea-ice loss reduces severity of cold air outbreaks in midlatitudes. Geophys Res Lett. doi: 10.1002/2016GL068092 Google Scholar
  2. Bader J, Mesquita MD, Hodges KI, Keenlyside N, Østerhus S, Miles M (2011) A review on northern hemisphere sea-ice, storminess and the north atlantic oscillation: observations and projected changes. Atmos Res 101(4):809–834. doi: 10.1016/j.atmosres.2011.04.007.
  3. Barnes EA (2013) Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes. Geophys Res Lett. doi: 10.1002/grl.50880 Google Scholar
  4. Barnes EA, Polvani LM (2015) CMIP5 projections of Arctic amplification, of the North American/North Atlantic circulation, and of their relationship. J Clim. doi: 10.1175/JCLI-D-14-00589.1 Google Scholar
  5. Barnes EA, Screen JA (2015) The impact of Arctic warming on the midlatitude jet-stream: can it? Has it? Will it? Wiley Interdiscip Rev Clim Change 6(3):277–286. doi: 10.1002/wcc.337 CrossRefGoogle Scholar
  6. Beranová R, Kyselý J (2012) Relationships between the North Atlantic Oscillation index and temperatures in Europe in global climate models. Stud Geophys et Geod 57(1):138–153. doi: 10.1007/s11200-012-0824-0 CrossRefGoogle Scholar
  7. Bintanja R, van der Linden EC (2013) The changing seasonal climate in the Arctic. Sci Rep 3:1556. doi: 10.1038/srep01556 CrossRefGoogle Scholar
  8. Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee YY, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son SW, Toohey M, Wilcox L, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118(6):2494–2505. doi: 10.1002/jgrd.50125 CrossRefGoogle Scholar
  9. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7(9):627–637. doi: 10.1038/ngeo2234 CrossRefGoogle Scholar
  10. Davini P, Cagnazzo C, Anstey JA (2014) A blocking view of the stratosphere-troposphere coupling. J Geophys Res Atmos 119(19):11,100–11,115. doi: 10.1002/2014JD021703 CrossRefGoogle Scholar
  11. Deser C, Tomas R, Alexander M, Lawrence D (2010) The seasonal atmospheric response to projected arctic sea ice loss in the late twenty-first century. J Clim 23(2):333–351. doi: 10.1175/2009JCLI3053.1 CrossRefGoogle Scholar
  12. Deser C, Tomas RA, Sun L (2015) The role of ocean-atmosphere coupling in the zonal-mean atmospheric response to Arctic sea ice loss. J Clim 28(6):2168–2186. doi: 10.1175/JCLI-D-14-00325.1 CrossRefGoogle Scholar
  13. Eichelberger SJ (2002) A mechanistic model of the northern annular mode. J Geophys Res 107(D19):4388. doi: 10.1029/2001JD001092 CrossRefGoogle Scholar
  14. Ferreira D, Marshall J, Bitz CM, Solomon S, Plumb A (2015) Antarctic ocean and sea ice response to ozone depletion: a two-time-scale problem. J Clim 28(3):1206–1226. doi: 10.1175/JCLI-D-14-00313.1 CrossRefGoogle Scholar
  15. Frankignoul C, Sennéchael N, Cauchy P (2014) Observed atmospheric response to cold season sea ice variability in the Arctic. J Clim 27(3):1243–1254. doi: 10.1175/JCLI-D-13-00189.1 CrossRefGoogle Scholar
  16. Gillett NP (2002) How linear is the Arctic oscillation response to greenhouse gases? J Geophys Res 107(D3):4022. doi: 10.1029/2001JD000589 CrossRefGoogle Scholar
  17. Gillett NP, Fyfe JC (2013) Annular mode changes in the CMIP5 simulations. Geophys Res Lett 40(6):1189–1193. doi: 10.1002/grl.50249 CrossRefGoogle Scholar
  18. Guirguis K, Gershunov A, Schwartz R, Bennett S (2011) Recent warm and cold daily winter temperature extremes in the Northern Hemisphere. Geophys Res Lett. doi: 10.1029/2011GL048762 Google Scholar
  19. Hanna E, Fettweis X, Mernild SH, Cappelen J, Ribergaard MH, Shuman CA, Steffen K, Wood L, Mote TL (2013) Atmospheric and oceanic climate forcing of the exceptional Greenland ice sheet surface melt in summer 2012. Int J Climatol. doi: 10.1002/joc.3743 Google Scholar
  20. Hanna E, Cropper TE, Jones PD, Scaife A, Allan R (2015) Recent seasonal asymmetric changes in the NAO (a marked summer decline and increased winter variability) and associated changes in the AO and Greenland blocking index. Int J Climatol 35(9):2540–2554. doi: 10.1002/joc.4157 CrossRefGoogle Scholar
  21. Honda M, Inoue J, Yamane S (2009) Influence of low Arctic sea ice minima on anomalously cold Eurasian winters. Geophys Res Lett 36(8):L08,707. doi: 10.1029/2008GL037079 CrossRefGoogle Scholar
  22. Hopsch S, Cohen J, Dethloff K (2012) Analysis of a link between fall Arctic sea ice concentration and atmospheric patterns in the following winter. Tellus A 64. doi: 10.3402/tellusa.v64i0.18624.
  23. Hurrell JW (1995) Decadal trends in the north atlantic oscillation: regional temperatures and precipitation. Science (New York, NY) 269(5224):676–679. doi: 10.1126/science.269.5224.676.
  24. Inoue J, Hori ME, Takaya K (2012) The Role of Barents Sea Ice in the wintertime cyclone track and emergence of a warm-Arctic cold-Siberian anomaly. J Clim 25(7):2561–2568. doi: 10.1175/JCLI-D-11-00449.1 CrossRefGoogle Scholar
  25. Karpechko AY (2010) Uncertainties in future climate attributable to uncertainties in future northern annular mode trend. Geophys Res Lett. doi: 10.1029/2010GL044717 Google Scholar
  26. Kim BM, Son SW, Min SK, Jeong JH, Kim SJ, Zhang X, Shim T, Yoon JH (2014) Weakening of the stratospheric polar vortex by Arctic sea-ice loss. Nat Commun 5:4646. doi: 10.1038/ncomms5646.
  27. L’Heureux M, Butler A, Jha B, Kumar A, Wang W (2010) Unusual extremes in the negative phase of the Arctic oscillation during 2009. Geophys Res Lett. doi: 10.1029/2010GL043338 Google Scholar
  28. Li J (2003) A modified zonal index and its physical sense. Geophys Res Lett 30(12):1632. doi: 10.1029/2003GL017441 CrossRefGoogle Scholar
  29. Luo D, Diao Y, Feldstein SB (2011) The variability of the Atlantic storm track and the north atlantic oscillation: a link between intraseasonal and interannual variability. J Atmos Sci 68(3):577–601. doi: 10.1175/2010JAS3579.1 CrossRefGoogle Scholar
  30. Massonnet F, Fichefet T, Goosse H, Bitz CM, Philippon-Berthier G, Holland MM, Barriat PY (2012) Constraining projections of summer Arctic sea ice. Cryosphere Discuss 6(4):2931–2959. doi: 10.5194/tcd-6-2931-2012.
  31. Matsumura S, Zhang X, Yamazaki K (2014) Summer Arctic atmospheric circulation response to spring Eurasian snow cover and its possible linkage to accelerated sea ice decrease. J Clim. doi: 10.1175/JCLI-D-13-00549.1 Google Scholar
  32. Moore GWK, Renfrew IA (2012) Cold European winters: interplay between the NAO and the East Atlantic mode. Atmos Sci Lett 13(1):1–8. doi: 10.1002/asl.356 CrossRefGoogle Scholar
  33. Notz D (2015) How well must climate models agree with observations? Philos Trans R Soc A Math Phys Eng Sci 373(2052):20140,164. doi: 10.1098/rsta.2014.0164.
  34. Oshika M, Tachibana Y, Nakamura T (2014) Impact of the winter North Atlantic oscillation (NAO) on the Western Pacific (WP) pattern in the following winter through Arctic sea ice and ENSO : part I observational evidence. Clim Dyn. doi: 10.1007/s00382-014-2384-1 Google Scholar
  35. Osprey SM, Gray LJ, Hardiman SC, Butchart N, Hinton TJ (2013) Stratospheric variability in twentieth-century CMIP5 simulations of the met office climate model: high top versus low top. J Clim 26(5):1595–1606. doi: 10.1175/JCLI-D-12-00147.1 CrossRefGoogle Scholar
  36. Ostermeier GM, Wallace JM (2003) Trends in the North Atlantic oscillation northern hemisphere annular mode during the twentieth century*. J Clim 16(2):336–341. doi: 10.1175/1520-0442(2003)016<0336:TITNAO>2.0.CO;2 CrossRefGoogle Scholar
  37. Overland J, Francis JA, Hall R, Hanna E, Kim SJ, Vihma T (2015) The melting Arctic and mid-latitude weather patterns: are they connected? J Clim. doi: 10.1175/JCLI-D-14-00822.1 Google Scholar
  38. Peings Y, Magnusdottir G (2014) Response of the wintertime northern hemisphere atmospheric circulation to current and projected arctic sea ice decline: a numerical study with CAM5. J Clim 27:244–264. doi: 10.1175/JCLI-D-13-00272.1 CrossRefGoogle Scholar
  39. Petoukhov V, Semenov VA (2010) A link between reduced Barents–Kara sea ice and cold winter extremes over northern continents. J Geophys Res Atmos 115(21):D21111. doi: 10.1029/2009JD013568 CrossRefGoogle Scholar
  40. Petrie RE, Shaffrey LC, Sutton RT (2015a) Atmospheric impact of Arctic sea ice loss in a coupled ocean\(\breve{2}\)013 atmosphere simulation*. J Clim 28(24):9606–9622. doi: 10.1175/JCLI-D-15-0316.1 CrossRefGoogle Scholar
  41. Petrie RE, Shaffrey LC, Sutton RT (2015b) Atmospheric response in summer linked to recent Arctic sea ice loss. Q J R Meteorol Soc 141(691):2070–2076. doi: 10.1002/qj.2502 CrossRefGoogle Scholar
  42. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, the art of scientific computing. Cambridge University Press, CambridgeGoogle Scholar
  43. Rind D (2005) AO/NAO response to climate change: 1. Respective influences of stratospheric and tropospheric climate changes. J Geophys Res 110(D12):D12,107. doi: 10.1029/2004JD005103 CrossRefGoogle Scholar
  44. Scaife AA, Folland CK, Alexander LV, Moberg A, Knight JR (2008) European climate extremes and the north Atlantic oscillation. J Clim 21(1):72–83. doi: 10.1175/2007JCLI1631.1 CrossRefGoogle Scholar
  45. Screen JA, Simmonds I, Deser C, Tomas R (2013) The atmospheric response to three decades of observed arctic sea ice loss. J Clim 26(4):1230–1248. doi: 10.1175/JCLI-D-12-00063.1 CrossRefGoogle Scholar
  46. Screen JA, Deser C, Simmonds I, Tomas R (2014) Atmospheric impacts of Arctic sea-ice loss, 1979–2009: separating forced change from atmospheric internal variability. Clim Dyn 43(1–2):333–344. doi: 10.1007/s00382-013-1830-9 CrossRefGoogle Scholar
  47. Sun L, Deser C, Polvani L, Tomas R (2014) Influence of projected Arctic sea ice loss on polar stratospheric ozone and circulation in spring. Environ Res Lett 9(8):084,016. doi: 10.1088/1748-9326/9/8/084016.
  48. Sun L, Deser C, Tomas RA (2015) Mechanisms of stratospheric and tropospheric circulation response to projected Arctic sea ice loss. J Clim 28(19):7824–7845. doi: 10.1175/JCLI-D-15-0169.1 CrossRefGoogle Scholar
  49. Sung MK, Lim GH, Kug JS, An SI (2011) A linkage between the North Atlantic oscillation and its downstream development due to the existence of a blocking ridge. J Geophys Res 116(D11):D11,107. doi: 10.1029/2010JD015006 CrossRefGoogle Scholar
  50. Swart NC, Fyfe JC, Hawkins E, Kay JE, Jahn A (2015) Influence of internal variability on Arctic sea-ice trends. Nat Clim Change 5(2):86–89. doi: 10.1038/nclimate2483 CrossRefGoogle Scholar
  51. Taws SL, Marsh R, Wells NC, Hirschi J (2011) Re-emerging ocean temperature anomalies in late-2010 associated with a repeat negative NAO. Geophys Res Lett. doi: 10.1029/2011GL048978 Google Scholar
  52. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  53. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: month-to-month variability. J Clim 13(5):1000–1016. doi: 10.1175/1520-0442(2000)0131000:AMITEC2.0.CO;2.;2
  54. Vihma T (2014) Effects of Arctic sea ice decline on weather and climate: a review. Surv Geophys 35(5):1175–1214. doi: 10.1007/s10712-014-9284-0 CrossRefGoogle Scholar
  55. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave breaking interpretation of the north Atlantic oscillation. J Atmos Sci 65(2):609–626. doi: 10.1175/2007JAS2347.1 CrossRefGoogle Scholar
  56. Woollings T, Harvey B, Masato G (2014) Arctic warming, atmospheric blockingand cold European winters in CMIP5 models. Environ Res Lett 9(1):014,002. doi: 10.1088/1748-9326/9/1/014002.
  57. Wyatt MG, Curry JA (2013) Role for Eurasian Arctic shelf sea ice in a secularly varying hemispheric climate signal during the 20th century. Clim Dyn. doi: 10.1007/s00382-013-1950-2 Google Scholar
  58. Yang S, Christensen JH (2012) Arctic sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophys Res Lett. doi: 10.1029/2012GL053338 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Emma J. D. Boland
    • 1
    Email author
  • Thomas J. Bracegirdle
    • 1
  • Emily F. Shuckburgh
    • 1
  1. 1.British Antarctic SurveyCambridgeUK

Personalised recommendations