Climate Dynamics

, Volume 49, Issue 1–2, pp 649–663 | Cite as

Links between central Greenland stable isotopes, blocking and extreme climate variability over Europe at decadal to multidecadal time scales

  • N. RimbuEmail author
  • G. Lohmann
  • M. Werner
  • M. Ionita


The link between central Greenland stable oxygen isotopes, atmospheric blocking frequency and cold temperature extremes at decadal to multidecadal time scales is investigated using observed and proxy data as well as model experiments. A composite analysis reveals that positive stable isotope anomalies in central Greenland are associated with enhanced blocking activity in the Atlantic European region. Several indices of blocking activity in the Atlantic European region are higher correlated with central Greenland stable isotope time series than with the North Atlantic Oscillation indices both in observations and model simulation. Furthermore, the blocking frequency anomaly pattern associated with central Greenland stable isotope variability is similar to the blocking anomaly pattern associated with the Atlantic Multidecadal Oscillation. A composite analysis reveals that stable isotope variations in central Greenland are related to a large-scale pattern in the frequency of extreme low temperature events with significant positive anomalies over Europe and a southwest to northeast dipolar pattern over Asia. During observational period central Greenland isotope records, blocking and extreme temperature indices over Europe show enhanced variability 10–30 and 50–70 years. Similar quasi-periodicities dominate the spectrum of central Greenland isotope variability during the last millennium. We argue that long-term variations of climate extreme indices over Europe and Asia, as derived from observational data, can be put into a long-term perspective using central Greenland stable isotope ice core records.


Greenland ice cores Stable isotopes Atmospheric blocking Extreme temperatures 



This study is promoted by Helmholtz funding through the Polar Regions and Coasts in the Changing Earth System (PACES) programme of the AWI. Funding by the Helmholtz Climate Initiative REKLIM is gratefully acknowledged. M. Ionita is funded through the OC3 Project—High- and low-latitude atmosphere–ocean interactions (Excellence Cluster “The Ocean in the Earth System”). We would like to acknowledge Dr. Martin Butzin for model data support and fruitful discussions. We thank the data contributors for making their data available to the public as well as the two anonymous reviewers for their constructive comments.


  1. Andrade C, Leite M, Santos JA (2012) Temperature extremes in Europe: overview of their driving atmospheric patterns. Nat Hazards Earth Syst Sci 12:671–1691. doi: 10.5194/nhess-12-1671-2012 CrossRefGoogle Scholar
  2. Barlow LK, Rogers JC, Serreze MC, Barry RG (1997) Aspects of climate variability in the North Atlantic sector: discussion and relation to the Greenland Ice Sheet Project 2 high-resolution isotopic signal. J Geophs Res 102(C12):26333–26344. doi: 10.1029/96JC02401 CrossRefGoogle Scholar
  3. Barriopedro D, García-Herrera R, Lupo AR, Hernandez E (2006) A climatology of Northern Hemisphere blocking. J Clim 19:1042–1063. doi: 10.1175/JCLI3678.1 CrossRefGoogle Scholar
  4. Butzin M, Werner M, Masson-Delmotte V, Risi C, Frankenberg C, Gribanov K, Jouzel J, Zakharov VI (2014) Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmos Chem Phys 14:5853–5869. doi: 10.5194/acp-14-5853-2014 CrossRefGoogle Scholar
  5. Cohen J, Screen JA, Furtado JC, Barlow M, Whittleston D, Coumou D, Francis J, Dethloff K, Entekhabi D, Overland J, Jones J (2014) Recent Arctic amplification and extreme mid-latitude weather. Nat Geosci 7:627–637. doi: 10.1038/NGEO2234 CrossRefGoogle Scholar
  6. Comas-Bru L, McDermott F, Werner M (2016) The effect of the East Atlantic pattern on precipitation δ18O–NAO relationship in Europe. Clim Dyn 47:2059–2069. doi: 10.1007/s00382-015-2950-1 Google Scholar
  7. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Magueri M, Mok HY, Nordli Φ, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  8. Conroy JL, Cobb KM, Noone D (2013) Comparison of precipitation isotope variability across the tropical Pacific in observations and SWING2 model simulations. J Geophys Res Atmos 118:5867–5892. doi: 10.1002/jgrd.50412 CrossRefGoogle Scholar
  9. Davini P, Cagnazzo C, Gualdi S, Navarra A (2012) Bidimensional diagnostics, variability and trends of Northern Hemisphere blocking. J Clim 25:6496–6509. doi: 10.1175/JCLI-D-12-00032.1 CrossRefGoogle Scholar
  10. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Khöler M, Matricardi M, McNally AP, Monge-Sanz BM, Mocrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thèpaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteor Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  11. Dima N, Rimbu N, Dima I (2002) Arctic Oscillation variability generated through inter-oceans interactions. Geophys Res Lett 29(14):22-1–22-4. doi: 10.1029/2002GL014717 CrossRefGoogle Scholar
  12. Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M, Caesar J, Hewitson B, Jack C, Klein Tank AMG, Kruger AC, Marengo J, Peterson TC, Renom M, Oria Rojas C, Rusticucci M, Salinger J, Elrayah AS, Sekele SS, Srivastava AK, Trewin B, Villarroel C, Vincent LA, Zhai P, Zhang X, Kitching S (2013) Updated analysis of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 data set. J Geophys Res Atmos 118:2098–2118. doi: 10.1002/jgrd.50150 CrossRefGoogle Scholar
  13. Francis JA, Vavrus SJ (2012) Evidences linking Arctic amplification to extreme weather in mid-latitudes. Geopys Res Lett 39:L06801. doi: 10.1029/2012GL051000 CrossRefGoogle Scholar
  14. Häkkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334:655–659. doi: 10.1126/science.1205683 CrossRefGoogle Scholar
  15. Hanna E, Cropper TE, Hall RJ, Cappelen J (2016) Greenland blocking index 1851-2015: a regional climate change signal. Int J Climatol. doi: 10.1002/joc.4673 Google Scholar
  16. Haylock MR, Hofstra N, Klein Tank AMG, Klock EJ, Jones PD, New M (2008) A European daily high-resolution gridded data-set of surface temperature and precipitation. J Geophys Res Atmos 113:D20119. doi: 10.1029/2008JD10201 CrossRefGoogle Scholar
  17. Hurrell JW, Kushnir Y, Visbeck M, Ottersen G (2003) An overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical monograph series, vol 134, pp 1–35Google Scholar
  18. Ionita M, Lohmann G, Rimbu N (2008) Prediction of spring Elbe discharge based on stable teleconnections with global temperature and precipitation. J Clim 21:6215–6226. doi: 10.1175/2008jcli2248.1 CrossRefGoogle Scholar
  19. Ionita M, Dima M, Lohmann G, Scholz P, Rimbu N (2014) Predicting the June 2013 European flooding based on precipitation, soil moisture and sea level pressure. J Hydrometeorol 16:598–614. doi: 10.1175/JHM-D-14-0156.1 CrossRefGoogle Scholar
  20. Ionita M, Scholz P, Lohmann G, Dima M, Prange M (2016) Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation. Sci Rep 6:32881. doi: 10.1038/srep32881 CrossRefGoogle Scholar
  21. IPCC (2000) Emission scenarios: a special report of Working Group III of the Intergovernmental Panel on Climate Change. Nakicenovic, edited by: Swart R. Cambridge University Press, CambridgeGoogle Scholar
  22. Jones PD, Jónsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  23. Karl TR, Nicholls N, Ghazi A (1999) CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: workshop summary. Clim Change 42:3–7CrossRefGoogle Scholar
  24. Langebroek PM, Werner M, Lohmann G (2011) Climate information imprinted in oxygen-isotopic composition of precipitation in Europe. Earth Planet Sci Lett 311:144–154. doi: 10.1016/j.epsl.2011.08.049 CrossRefGoogle Scholar
  25. Liu C, Barnes EA (2015) Extreme moisture transport into the Arctic linked to Rossby wave breaking. J Geophys Res Atmos 120:3774–3788. doi: 10.1002/2014JD022796 CrossRefGoogle Scholar
  26. Lohmann G, Rimbu N, Dima M (2005) Where can the Arctic oscillation be reconstructed? Towards a reconstruction of climate modes based on stable teleconnections. Climate of the Past Discussions, European Geosciences Union (EGU), vol 1, no 1, pp 17–56Google Scholar
  27. Masson-Delmotte V, Steen-Larsen HC, Ortega P, Swingedouw D, Popp T, Vinther BM, Oerter H, Sveinbjornsdottir AE, Gudlaugsdottir H, Box JE, Falourd S, Fettweis X, Gallée H, Garnier E, Gkinis V, Jouzel J, Landais A, Minster B, Paradis N, Orsi A, Risi C, Werner M, White JWC (2015) Recent changes in north-west Greenland climate documented by NEEM shallow ice core data and simulations, and implications for past temperature reconstructions. The Cryosphere 9:1481–1504. doi: 10.5194/tc-9-1481-2015 CrossRefGoogle Scholar
  28. McLeod JT, Mote TL (2016) Linking interannual variability in extreme Greenland blocking episodes to the recent increase in summer melting across the Greenland ice sheet. Int J Climatol 36:1484–1499. doi: 10.1002/joc.4440 CrossRefGoogle Scholar
  29. Ortega P, Swingedouw D, Masson-Delmotte Risi C, Vinther B, Yiou P, Vautard R, Yoshimura K (2014) Characterizing atmospheric circulation signals in Greenland ice cores: insights from a weather regime approach. Clim Dyn 43:2585–2605. doi: 10.1007/s00382-014-2074-z CrossRefGoogle Scholar
  30. Ortega P, Mignot J, Swingedouw D, Sevellec F, Guilyardi E (2015) Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Prog Oceanogr 137:237–249. doi: 10.1016/j.pocean.2015.06.009 CrossRefGoogle Scholar
  31. Rimbu N, Lohmann G (2010) Decadal variability in a Central Greenland high-resolution deuterium isotope record and its relationship to the frequency of daily atmospheric circulation patterns from the North Atlantic Region. J Clim 23:4608–4618. doi: 10.1175/2010JCLI3556.1 CrossRefGoogle Scholar
  32. Rimbu N, Lohmann G (2011) Winter and summer blocking variability in the North Atlantic region. Evidence from long-term observational and proxy data from southwestern Greenland. Clim Past 7:543–555. doi: 10.5194/cp-7-543-2011 CrossRefGoogle Scholar
  33. Rimbu N, Lohmann G, Grosfeld K (2007) Northern Hemisphere atmospheric blocking in ice core accumulation records from northern Greenland. Geophys Res Lett 34(9):L09704. doi: 10.1029/2006GL029175 CrossRefGoogle Scholar
  34. Rimbu N, Lohmann G, Ionita M (2014) Interannual to multidecadal Euro-Atlantic blocking variability during winter and its relationship with extreme low temperatures in Europe. J Geophys Res Atmos 119:13621–13636. doi: 10.1002/2014JD021983 CrossRefGoogle Scholar
  35. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791. doi: 10.1175/JCLI3824.1 CrossRefGoogle Scholar
  36. Scherrer SC, Croci-Maspoli M, Schwierz C, Appenzeller C (2006) Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region. Int J Climatol 26:233–249. doi: 10.1002/joc.1250 CrossRefGoogle Scholar
  37. Shabbar A, Huang J, Higuchi K (2001) The relationship between the wintertime North Atlantic Oscillation and blocking episodes in the North Atlantic. Int J Climatol 21:355–369. doi: 10.1002/joc.612 CrossRefGoogle Scholar
  38. Silmann J, Croci-Maspoli M, Kallache M, Katz RW (2011) Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J Clim 24:5899–5913. doi: 10.1175/2011JCLI4075.1 CrossRefGoogle Scholar
  39. Sung MK, Lim GH, Kug JS (2010) Phase asymmetric downstream development of the North Atlantic Oscillation and its impact on the East Asian winter monsoon. J Geophys Res 115:D9. doi: 10.1029/2009JD013153 Google Scholar
  40. Swingedouw D, Ortega P, Mignot J, Guilyardi E, Masson-Delmotte V, Butler PG, Khodri M, Sèfèrian R (2015) Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat Commun 6:6545. doi: 10.1038/ncomms7545 CrossRefGoogle Scholar
  41. Tibaldi S, Molteni F (1990) On the operational predictability of blocking. Tellus A 42:343–365. doi: 10.1034/j.1600-0870.1990.t01-2-00003.x CrossRefGoogle Scholar
  42. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorl Soc 79:61–78. doi: 10.1175/1520-0477 CrossRefGoogle Scholar
  43. Trigo RM, Trigo IF, DaCamara CC, Osborn TJ (2004) Climate impact of the European winter blocking episodes from the NCEP/NCAR reanalyses. Clim Dyn 23(1):17–28. doi: 10.1007/s00382-004-0410-4 CrossRefGoogle Scholar
  44. Vinther BM, Jones PD, Briffa KR, Clausen HB, Andersen KK, Dahl-Jensen D, Johnsen SJ (2010a) Climatic signals in multiple high resolved stable isotope records from Greenland. Quat Sci Rev 29:522–538. doi: 10.1016/j.quascirev.2009.11.002 CrossRefGoogle Scholar
  45. Vinther BM et al (2010b) CRETE_1974 high resolution stable oxygen isotope record. doi: 10.1594/PANGAEA.786356  
  46. Vinther BM et al (2010c) (Fig. 20) GRIP high resolution stable oxygen isotope record. doi: 10.1594/PANGAEA.786354
  47. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  48. Werner M, Heimann M (2002) Modelling interannual variability of water isotopes in Greenland and Antarctica. J Geophys Res 107(D1)4001:ACL 1–13. doi: 10.1029/2001JD900253 Google Scholar
  49. Werner M, Langebroek PM, Carlsen T, Herold M, Lohmann G (2011) Stable water isotopes in the ECHAM5 general circulation model: toward high-resolution isotope modeling on a global scale. J Geophys Res 116:D15109. doi: 10.1029/2011jd015681 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  2. 2.MARUM—Center for Marine Environmental SciencesUniversity of BremenBremenGermany

Personalised recommendations