Climate Dynamics

, Volume 49, Issue 1–2, pp 595–618 | Cite as

Coherency of late Holocene European speleothem δ18O records linked to North Atlantic Ocean circulation

  • Michael Deininger
  • Frank McDermott
  • Manfred Mudelsee
  • Martin Werner
  • Norbert Frank
  • Augusto Mangini


Speleothem δ18O records provide valuable information about past continental environmental and climatic conditions, although their interpretation is often not straightforward. Here we evaluate a compilation of late Holocene speleothem δ18O records using a Monte Carlo based Principal Component Analysis (MC-PCA) method that accounts for uncertainties in individual speleothem age models and for the variable temporal resolution of each δ18O record. The MC-PCA approach permits not only the identification of temporally coherent changes in speleothem δ18O; it also facilitates their graphical depiction and evaluation of their spatial coherency. The MC-PCA method was applied to 11 Holocene speleothem δ18O records that span most of the European continent (apart from the circum-Mediterranean region). We observe a common (shared) mode of speleothem δ18O variability that suggests millennial-scale coherency and cyclicity during the last 4.5 ka. These changes are likely caused by variability in atmospheric circulation akin to that associated with the North Atlantic Oscillation, reflecting meridionally shifted westerlies. We argue that these common large-scale variations in European speleothem δ18O records are in phase with changes in the North Atlantic Ocean circulation indicated by the vigour of the Iceland Scotland Overflow Water (ISOW), the strength of the subpolar gyre (SPG) and an ocean stacked North Atlantic ice rafted debris (IRD) index. Based on a recent modelling study, we conclude that these changes in the North Atlantic circulation history may be caused by wind stress on the ocean surface driven by shifted westerlies. However, the mechanisms that ultimately force the westerlies remain unclear.


Speleothems Spatio-temporal coherency Palaeoclimate dynamics Subpolar gyre ISOW Westerlies 



We thank the executive editor Jean-Claude Duplessy, Jud Partin and three anonymous reviewers for their constructive comments that significantly improved the manuscript. M.D. developed the MC-PCA approach for speleothems during his Ph.D. at the Institute of Environmental Physics of the Heidelberg University, Germany, which was funded by the Deutsche Forschungsgemeinschaft (DFG) research group “DAPHNE” (DFG Forschergruppe 668). He is currently funded by the Irish Research Council (IRC) by a Government of Ireland Postdoctoral Fellowship (GOIPD/2015/789). F.McD. acknowledges support from Science Foundation Ireland through its Research Frontiers Programme (RFP) Grants 07/RFP/GEOF265 and 08/FRP/GEO1184. The MATLAB code for the MC-PCA approach is available from the authors.

Supplementary material

382_2016_3360_MOESM1_ESM.docx (5.1 mb)
Supplementary material 1 (DOCX 5183 kb)


  1. Anchukaitis KJ, Tierney JE (2012) Identifying coherent spatiotemporal modes in time-uncertain proxy paleoclimate records. Clim Dyn 41:1291–1306CrossRefGoogle Scholar
  2. Baker A, Genty D, Dreybrodt W, Barnes WL, Mockler NJ, Grapes J (1998) Testing theoretically predicted stalagmite growth rate with recent annually laminated samples: implications for past stalagmite deposition. Geochim Cosmochim Acta 62:393–404CrossRefGoogle Scholar
  3. Baker A, Wilson R, Fairchild IJ, Franke J, Spötl C, Mattey D, Trouet V, Fuller L (2011) High resolution δ 18 O and δ 13 C records from an annually laminated Scottish stalagmite and relationship with last millennium climate. Global Planet Change 79:303–311CrossRefGoogle Scholar
  4. Baker A, Hellstrom C, Kelly BF, Mariethoz G, Trouet V (2015) A composite annual-resolution stalagmite record of North Atlantic climate over the last three millennia. Sci Rep 5:10307CrossRefGoogle Scholar
  5. Baldini LM, McDermott F, Foley AM, Baldini JUL (2008) Spatial variability in the European winter precipitation δ18O-NAO relationship: implications for reconstructing NAO-mode climate variability in the Holocene. Geophys Res Lett 35:L04709–L04709CrossRefGoogle Scholar
  6. Baldini LM, McDermott F, Baldini JUL, Arias P, Cueto M, Fairchild IJ, Hoffmann DL, Mattey DP, Müller W, Nita DC, Ontañón R, Garciá-Moncó C, Richards DA (2015) Regional temperature, atmospheric circulation, and sea-ice variability within the Younger Dryas Event constrained using a speleothem from northern Iberia. Earth Planet Sci Lett 419:101–110CrossRefGoogle Scholar
  7. Blindheim J, Østerhus S (2005) The Nordic Seas, main oceanographic features. An integrated perspective, The Nordic seas, pp 11–37Google Scholar
  8. Bond G, Showers W, Cheseby M, Lotti R, Almasi P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266CrossRefGoogle Scholar
  9. Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on North Atlantic climate during the Holocene. Science 294:2130–2136CrossRefGoogle Scholar
  10. Cattell RB (1966) The scree test for the number of factors. Multivar Behav Res 1:245–276CrossRefGoogle Scholar
  11. Cheng H, Lawrence Edwards R, Shen C-C, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C, Wang X, Calvin Alexander E Jr (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371–372:82–91CrossRefGoogle Scholar
  12. Cheng H, Sinha A, Verheyden S, Nader FH, Li XL, Zhang PZ, Yin JJ, Yi L, Peng YB, Rao ZG (2015) The climate variability in northern Levant over the past 20,000 years. Geophys Res Lett 42:8641–8650CrossRefGoogle Scholar
  13. Clemmensen LB, Murray A, Heinemeier J, de Jong R (2009) The evolution of Holocene coastal dunefields, Jutland, Denmark: a record of climate change over the past 5000 years. Geomorphology 105:303–313CrossRefGoogle Scholar
  14. Colin C, Frank N, Copard K, Douville E (2010) Neodymium isotopic composition of deep-sea corals from the NE Atlantic: implications for past hydrological changes during the Holocene. Quat Sci Rev 29:2509–2517CrossRefGoogle Scholar
  15. Comas-Bru L, McDermott F (2013) Impacts of the EA and SCA patterns on the European twentieth century NAO-winter climate relationship. Q J R Meteorol Soc 140:354–363 CrossRefGoogle Scholar
  16. Comas-Bru L, McDermott F, Werner M (2016) The effect of the East Atlantic pattern on the precipitation δ18O-NAO relationship in Europe. Clim Dyn 47:2059–2069CrossRefGoogle Scholar
  17. Copard K, Colin C, Henderson GM, Scholten J, Douville E, Sicre MA, Frank N (2012) Late Holocene intermediate water variability in the northeastern Atlantic as recorded by deep-sea corals. Earth Planet Sci Lett 313:34–44CrossRefGoogle Scholar
  18. Day CC, Henderson GM (2011) Oxygen isotopes in calcite grown under cave-analogue conditions. Geochim Cosmochim Acta 75:3956–3972CrossRefGoogle Scholar
  19. Deininger M (2013) The European holocene climate from the Speleothem’s view, PhD thesis. Department of Physics and Astronomy, Faculty of Physics and Astronomy, University of Heidelberg.,
  20. Deininger M, Fohlmeister J, Scholz D, Mangini A (2012) Isotope disequilibrium effects: the influence of evaporation and ventilation effects on the carbon and oxygen isotope composition of speleothems—a model approach. Geochim Cosmochim Acta 96:57–79CrossRefGoogle Scholar
  21. Dietrich S, Werner M, Spangehl T, Lohmann G (2013) Influence of orbital forcing and solar activity on water isotopes in precipitation during the mid-and late Holocene. Clim Past 9:13–26. doi: 10.5194/cp-9-13-2013 Google Scholar
  22. Dreybrodt W, Scholz D (2011) Climatic dependence of stable carbon and oxygen isotope signals recorded in speleothems: from soil water to speleothem calcite. Geochim Cosmochim Acta 75:734–752CrossRefGoogle Scholar
  23. Fairchild IJ, Treble PC (2009) Trace elements in speleothems as recorders of environmental change. Quat Sci Rev 28:449–468CrossRefGoogle Scholar
  24. Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F (2006) Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75:105–153CrossRefGoogle Scholar
  25. Feldhoff JH, Donner RV, Donges JF, Marwan N, Kurths J (2012) Geometric detection of coupling directions by means of inter-system recurrence networks. Phys Lett A 376:3504–3513CrossRefGoogle Scholar
  26. Field RD (2010) Observed and modeled controls on precipitation δ18O over Europe: from local temperature to the Northern Annular Mode. J Geophys Res Atmos 1984–2012:115Google Scholar
  27. Fischer MJ (2016) Predictable components in global speleothem δ 18 O. Quat Sci Rev 131:380–392CrossRefGoogle Scholar
  28. Fletcher WJ, Debret M, Goñi MFS (2013) Mid-Holocene emergence of a low-frequency millennial oscillation in western Mediterranean climate: implications for past dynamics of the North Atlantic atmospheric westerlies. Holocene. doi: 10.1177/0959683612460783 Google Scholar
  29. Fleitmann D, Cheng H, Badertscher S, Edwards RL, Mudelsee M, Göktürk OM, Fankhauser A, Pickering R, Raible CC, Matter A, Kramers JD, Tuysuz O (2009) Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett. doi: 10.1029/2009GL040050 Google Scholar
  30. Fohlmeister J, Schröder-Ritzrau A, Scholz D, Spöotl C, Riechelmann DFC, Mudelsee M, Wackerbarth A, Gerdes A, Riechelmann S, Immenhauser A, Richter DK, Mangini A (2012) Bunker Cave stalagmites: an archive for central European Holocene climate variability. Clim Past 8(5):1751–1764. doi: 10.5194/cp-8-1751-2012 CrossRefGoogle Scholar
  31. Frisia S, Borsato A, Fairchild IJ, McDermott F (2000) Calcite fabrics, growth mechanisms, and environments of formation in speleothems from the Italian Alps and southwestern Ireland. J Sediment Res 70:1183–1196CrossRefGoogle Scholar
  32. Göktürk OM, Fleitmann D, Badertscher S, Cheng H, Edwards RL, Leuenberger M, Fankhauser A, Tüysüz O, Kramers J (2011) Climate on the southern Black Sea coast during the Holocene: implications from the Sofular Cave record. Quat Sci Rev 30:2433–2445CrossRefGoogle Scholar
  33. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:561–566CrossRefGoogle Scholar
  34. Hartland A, Fairchild IJ, Lead JR, Borsato A, Baker A, Frisia S, Baalousha M (2012) From soil to cave: transport of trace metals by natural organic matter in karst dripwaters. Chem Geol 304:68–82CrossRefGoogle Scholar
  35. Hoffmann DL, Prytulak J, Richards DA, Elliott T, Coath CD, Smart PL, Scholz D (2007) Procedures for accurate U and Th isotope measurements by high precision MC-ICPMS. Int J Mass Spectrom 264:97–109CrossRefGoogle Scholar
  36. Huang Y, Fairchild IJ (2001) Partitioning of Sr2+ and Mg2+ into calcite under karst-analogue experimental conditions. Geochim Cosmochim Acta 65:47–62CrossRefGoogle Scholar
  37. Hurrell JW (1995) Decadal trends in the North-Atlantic oscillation—regional temperatures and precipitation. Science 269:676–679CrossRefGoogle Scholar
  38. Jex CN, Phipps SJ, Baker A, Bradley C (2013) Reducing uncertainty in the climatic interpretations of speleothem δ18O. Geophys Res Lett 40:2259–2264CrossRefGoogle Scholar
  39. Kaiser HF (1960) The application of electronic-computers to factor-analysis. Educ Psychol Meas 20:141–151CrossRefGoogle Scholar
  40. Labuhn I, Genty D, Vonhof H, Bourdin C, Blamart D, Douville E, Ruan J, Cheng H, Edwards RL, Pons-Branchu E, Pierre M (2015) A high-resolution fluid inclusion δ18O record from a stalagmite in SW France: modern calibration and comparison with multiple proxies. Quat Sci Rev 110:152–165CrossRefGoogle Scholar
  41. Lachniet MS (2009) Climatic and environmental controls on speleothem oxygen-isotope values. Quat Sci Rev 28:412–432CrossRefGoogle Scholar
  42. Lachniet MS, Patterson WP, Burns S, Asmerom Y, Polyak V (2007) Caribbean and Pacific moisture sources on the Isthmus of Panama revealed from stalagmite and surface water δ18O gradients. Geophys Res Lett 34:L01708. doi: 10.1029/2006GL028469 CrossRefGoogle Scholar
  43. Lamb HH (2002) Climate, history and the modern world. Routledge, New YorkGoogle Scholar
  44. Langebroek PM, Werner M, Lohmann G (2011) Climate information imprinted in oxygen-isotopic composition of precipitation in Europe. Earth Planet Sci Lett 311:144–154CrossRefGoogle Scholar
  45. Linge H, Lauritzen SE, Andersson C, Hansen JK, Skoglund RØ, Sundqvist HS (2009) Stable isotope records for the last 10 000 years from Okshola cave (Fauske, northern Norway) and regional comparisons. Clim Past 5:667–682CrossRefGoogle Scholar
  46. Lohmann G, Wackerbarth A, Langebroek PM, Werner M, Fohlmeister J, Scholz D, Mangini A (2013) Simulated European stalagmite record and its relation to a quasi-decadal climate mode. Clim Past 9:89–98CrossRefGoogle Scholar
  47. Luetscher M, Hoffmann DL, Frisia S, Spötl C (2011) Holocene glacier history from alpine speleothems, Milchbach cave, Switzerland. Earth Planet Sci Letters 302:95–106CrossRefGoogle Scholar
  48. Magny M (2004) Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat Int 113:65–79CrossRefGoogle Scholar
  49. Magny M (2007) Holocene fluctuations of lake levels in west-central Europe: methods of reconstruction, regional pattern, palaeoclimatic significance and forcing factors. Encyclop Quat Sci 1389–1399Google Scholar
  50. Mangini A, Spötl C, Verdes P (2005) Reconstruction of temperature in the Central Alps during the past 2000 yr from a δ 18 O stalagmite record. Earth Planet Sci Lett 235:741–751CrossRefGoogle Scholar
  51. Mangini A, Verdes P, Spötl C, Scholz D, Vollweiler N, Kromer B (2007) Persistent influence of the North Atlantic hydrography on central European winter temperature during the last 9000 years. Geophys Res Lett 34:L02704CrossRefGoogle Scholar
  52. Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787CrossRefGoogle Scholar
  53. Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with ocean circulation. J Clim 14:1399–1421CrossRefGoogle Scholar
  54. Mayewski PA, Rohling EE, Curt Stager J, Karlén W, Maasch KA, David Meeker L, Meyerson EA, Gasse F, van Kreveld S, Holmgren K (2004) Holocene climate variability. Quat Res 62:243–255CrossRefGoogle Scholar
  55. McCarthy GD, Haigh ID, Hirschi JJM, Grist JP, Smeed DA (2015) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521:508–510CrossRefGoogle Scholar
  56. McDermott F (2004) Palaeo-climate reconstruction from stable isotope variations in speleothems: a review. Quat Sci Rev 23:901–918CrossRefGoogle Scholar
  57. McDermott F, Frisia S, Huang Y, Longinelli A, Spiro B, Heaton THE, Hawkesworth CJ, Borsato A, Keppens E, Fairchild IJ et al (1999) Holocene climate variability in Europe: evidence from δ 18 O, textural and extension-rate variations in three speleothems. Quat Sci Rev 18:1021–1038CrossRefGoogle Scholar
  58. McDermott F, Mattey DP, Hawkesworth C (2001) Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science 294:1328–1331CrossRefGoogle Scholar
  59. McDermott F, Atkinson TC, Fairchild IJ, Baldini LM, Mattey DP (2011) A first evaluation of the spatial gradients in δ18O recorded by European Holocene speleothems. Global Planet Change 79:275–287CrossRefGoogle Scholar
  60. Meckler AN, Affolter S, Dublyansky YV, Krüger Y, Vogel N, Bernasconi SM, Frenz M, Kipfer R, Leuenberger M, Spötl C (2015) Glacial–interglacial temperature change in the tropical West Pacific: a comparison of stalagmite-based paleo-thermometers. Quat Sci Rev 127:90–116CrossRefGoogle Scholar
  61. Mischel SA, Scholz D, Spötl C (2015) δ18O values of cave drip water: a promising proxy for the reconstruction of the North Atlantic Oscillation? Clim Dyn 45:3035–3050CrossRefGoogle Scholar
  62. Mjell TL, Ninnemann US, Eldevik T, Kleiven HKF (2015) Holocene multidecadal-to millennial-scale variations in Iceland–Scotland overflow and their relationship to climate. Paleoceanography 30:558–569CrossRefGoogle Scholar
  63. Moreno-Chamarro E, Zanchettin D, Lohmann K, Jungclaus JH (2016) An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes. Clim Dyn. doi: 10.1007/s00382-016-3106-7 Google Scholar
  64. Morley A, Rosenthal Y, deMenocal P (2014) Ocean–atmosphere climate shift during the mid-to-late Holocene transition. Earth Planet Sci Lett 388:18–26CrossRefGoogle Scholar
  65. Mudelsee M (2014) Climate time series analysis: classical statistical and bootstrap methods, 2nd edn. Springer, DordrechtGoogle Scholar
  66. Mühlinghaus C, Scholz D, Mangini A (2009) Modelling fractionation of stable isotopes in stalagmites. Geochim Cosmochim Acta 73:7275–7289CrossRefGoogle Scholar
  67. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706CrossRefGoogle Scholar
  68. Olsen J, Anderson NJ, Knudsen MF (2012) Variability of the North Atlantic Oscillation over the past 5,200 years. Nat Geosci 5:808–812CrossRefGoogle Scholar
  69. Polag D, Scholz D, Mühlinghaus C, Spötl C, Schröder-Ritzrau A, Segl M, Mangini A (2010) Stable isotope fractionation in speleothems: laboratory experiments. Chem Geol 279:31–39CrossRefGoogle Scholar
  70. Preisendorfer RW (1988) Principal component analysis in meteorology and oceanography. Elsevier, AmsterdamGoogle Scholar
  71. Rehfeld K, Marwan N, Heitzig J, Kurths J (2011) Comparison of correlation analysis techniques for irregularly sampled time series. Nonlinear Process Geophys 18:389–404CrossRefGoogle Scholar
  72. Rehfeld K, Marwan N, Breitenbach SFM, Kurths J (2013) Late Holocene Asian summer monsoon dynamics from small but complex networks of paleoclimate data. Clim Dyn 41:3–19CrossRefGoogle Scholar
  73. Richards DA, Dorale JA (2003) Uranium-series chronology and environmental applications of speleothems. Rev Mineral Geochem 52:407–460CrossRefGoogle Scholar
  74. Riechelmann DFC, Deininger M, Scholz D, Riechelmann S, Schröder-Ritzrau A, Spötl C, Richter DK, Mangini A, Immenhauser A (2013) Disequilibrium carbon and oxygen isotope fractionation in recent cave calcite: comparison of cave precipitates and model data. Geochim Cosmochim Acta 103:232–244CrossRefGoogle Scholar
  75. Scholz D, Hoffmann DL (2011) StalAge—an algorithm designed for construction of speleothem age models. Quat Geochronol 6:369–382CrossRefGoogle Scholar
  76. Sorrel P, Debret M, Billeaud I, Jaccard SL, McManus JF, Tessier B (2012) Persistent non-solar forcing of Holocene storm dynamics in coastal sedimentary archives. Nat Geosci 5:892–896CrossRefGoogle Scholar
  77. Spötl C, Mattey D (2006) Stable isotope microsampling of speleothems for palaeoenvironmental studies: a comparison of microdrill, micromill and laser ablation techniques. Chem Geol 235:48–58CrossRefGoogle Scholar
  78. Sundqvist HS, Holmgren K, Moberg A, Spoetl C, Mangini A, (2010) Stable isotopes in a stalagmite from NW Sweden document environmental changes over the past 4000 years. Boreas 39:77–86CrossRefGoogle Scholar
  79. Thornalley DJR, Elderfield H, McCave IN (2009) Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic. Nature 457:711–714CrossRefGoogle Scholar
  80. Tremaine DM, Froelich PN, Wang Y (2011) Speleothem calcite farmed in situ: modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim Cosmochim Acta 75:4929–4950CrossRefGoogle Scholar
  81. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80CrossRefGoogle Scholar
  82. Visbeck M, Chassignet EP, Curry RG, Delworth TL, Dickson RR, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation variability. In: The North Atlantic Oscillation: climatic significance and environmental impact, pp 113–145Google Scholar
  83. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the northern hemisphere winter. Mon Weather Rev 109:784CrossRefGoogle Scholar
  84. Wassenburg JA, Immenhauser A, Richter DK, Niedermayr A, Riechelmann S, Fietzke J, Scholz D, Jochum KP, Fohlmeister J, Schroder-Ritzrau A, Sabaoui A, Riechelmann DFC, Schneider L, Esper J (2013) Moroccan speleothem and tree ring records suggest a variable positive state of the North Atlantic Oscillation during the Medieval Warm Period. Earth Planet Sci Lett 375:291–302CrossRefGoogle Scholar
  85. Wassenburg JA, Dietrich S, Fietzke J, Fohlmeister J, Jochum KP, Scholz D, Richter DK, Sabaoui A, Spötl C, Lohmann G (2016) Reorganization of the North Atlantic Oscillation during early Holocene deglaciation. Nat Geosci 9:602–605. doi: 10.1038/ngeo2767 CrossRefGoogle Scholar
  86. Werner M, Langebroek PM, Carlsen T, Herold M, Lohmann G (2011) Stable water isotopes in the ECHAM5 general circulation model: toward high-resolution isotope modeling on a global scale. J Geophys Res 116:D15109–D15109CrossRefGoogle Scholar
  87. Yang H, Wang K, Dai H, Wang Y, Li Q (2016) Wind effect on the Atlantic meridional overturning circulation via sea ice and vertical diffusion. Clim Dyn 46:3387–3403CrossRefGoogle Scholar
  88. Zanchetta G, Drysdale RN, Hellstrom JC, Fallick AE, Isola I, Gagan MK, Pareschi MT (2007) Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: stalagmite evidence from Corchia cave (Central Italy). Quat Sci Rev 26:279–286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael Deininger
    • 1
  • Frank McDermott
    • 1
    • 2
  • Manfred Mudelsee
    • 3
    • 4
  • Martin Werner
    • 4
  • Norbert Frank
    • 5
  • Augusto Mangini
    • 5
  1. 1.UCD School of Earth SciencesUniversity College DublinBelfield, Dublin 4Ireland
  2. 2.UCD Earth InstituteUniversity College DublinBelfield, Dublin 4Ireland
  3. 3.Climate Risk AnalysisBad GandersheimGermany
  4. 4.Alfred Wegener InstituteHelmholtz Centre for Polar and Marine ResearchBremerhavenGermany
  5. 5.Institute of Environmental PhysicsHeidelberg UniversityHeidelbergGermany

Personalised recommendations