Advertisement

Climate Dynamics

, Volume 47, Issue 9–10, pp 3373–3386 | Cite as

The multidecadal component of the Mediterranean summer variability

  • M. J. OrtizBevia
  • A. RuizdeElvira
  • F. J. Alvarez-Garcia
  • M. Tasambay-Salazar
Article

Abstract

This study targets the low frequency components of the anomalous Mediterranean summer climatic variability. This last is characterised here by two indexes obtained from a statistical analysis of Mediterranean sea surface temperature anomalies. The evolution of the first of them, the Western Mediterranean Index, is dominated by a multidecadal timescale. This Index has a strong statistical impact on the summer air temperature anomalies in the European region. In the other index, the Mediterranean Dipole Index, the decadal timescale plays a major part. This last Index is linked to anomalous summer precipitations in some central European regions. A statistical methodology is used in order to identify some feedback relationships between the two Mediterranean indexes and other climate indexes which characterise some global or regional variability. In the case of the Western Mediterranean Index, the analysis reveals significant feedback relationships with two of these indexes. The selected predictors are introduced as variables in a statistical feedback model. The cross-skills scored in a cross-validation hindcast experiment reveals an important potential predictability. In this way, the multidecadal Mediterranean summer sea surface temperature variability appears as the result of two forcings, one related to the north-western Atlantic processes and the other connected to the north tropical Atlantic, and to a weak feedback onto the Atlantic. In the case of the Mediterranean Dipole Mode Index we have not found enough predictive potential in the feedback relationships identified.

Keywords

Root Mean Square Error Pacific Decadal Oscillation Atlantic Meridional Overturning Circulation North Atlantic Oscillation North Atlantic Oscillation Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank S. Broenimann for supplying the PNA Index obtained from the Twentieth Century Reanalysis. The NAO Index and the MO Index were obtained from http://www.cru.uea.ac.uk. The PDO Index comes from http://jisao.washington.edu/pdo. Other climate indexes, like the SO and the AMO Index can be found at http://www.esrl.noaa.gov. The NCEP/NCAR Reanalysis 1 datasets were provided at this very address. The HadIsst2 dataset was supplied by the Hadley Center, UK. The University of Delaware is acknowledged for its UDel_AirT_Precip data. The NCEP/NCAR Reanalysis data sets Some of the figures were produced using the NCAR Command Language (NCL) software package (version 6.1.2.). The three reviewers of this paper are acknowledged for useful comments.

References

  1. Ba J, Keenlyside NK, Park W, Latif M, Hawkins E, Ding H (2013) A mechanism for the Atlantic multidecadal variability in the Kiel Climate Model. Clim Dyn 41:2133–2144. doi: 10.1007/s00382-012-1633-4 CrossRefGoogle Scholar
  2. Barnston AG, Tippett MK, LHeureux ML, Li S, DeWitt D (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteor Soc 93:631–651. doi: 10.1175/BAMS-D-11-00111.1Bl CrossRefGoogle Scholar
  3. Barston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  4. Blumenthal M (1991) Predictability of a coupled ocean-atmosphere model. J Clim 4:766–784. doi: 10.1175/1520-0442(1991)004 CrossRefGoogle Scholar
  5. Broenimann S, Stickler A, Griessen T, Fisher AM, Grant A, Ewen T, Zhou T, Schraner N, Rozanov E, Peter T (2009) Variability of large scale atmospheric circulation indices for the northern hemisphere during the past 100 years. Meteorologische Zeitschrift 18:379–396. doi: 10.1127/0941-2948/200970389 CrossRefGoogle Scholar
  6. Chiang JCH, Vimont DJ (2004) Analogous pacific and atlantic meridional modes of tropical atmosphere-ocean variability. J Clim 17:4143–4158. doi: 10.1175/JCLI4953.1 CrossRefGoogle Scholar
  7. Collins WD et al (2006) Radiative forcing by well-mixed greenhouse gases: estimates from climate models in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). J Geophys Res 111:D14317. doi: 10.1029/2005JD006713 CrossRefGoogle Scholar
  8. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteor Soc 137:1–28. doi: 10.1002/qj776 CrossRefGoogle Scholar
  9. Conte M, Giuffrida A, Tedesco S (1989) The Mediterranean oscillation impact on precipitation and hidrology in Italy, climate water. Publications of the Academy of Finland, HelsinkiGoogle Scholar
  10. Enfield DB, Mestas-Núñez AM, Mayer DA, Cid-Serrano L (1999) How ubiquitous is the dipole relationship in the tropical Atlantic sea surface temperatures? J Geophys Res 104:7841–7848. doi: 10.1029/199JC900036 CrossRefGoogle Scholar
  11. Enfield DB, Mestas-Núñez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys Res Lett 28:2077–2080. doi: 10.1029/2000JL012745 CrossRefGoogle Scholar
  12. Fisher RA (1921) On the probable error of a coefficient of correlation deduced from a small sample. Metron 1:1Google Scholar
  13. Font J, Puig P, Salat J, Palanques A, Emelianov J (2007) Sequence of hydrographic changes in the NW Mediterranean deep water due to the exceptional winter of 2005. Sci Mar 71:339–346CrossRefGoogle Scholar
  14. Ghil M, Mulhaupt A, Pestiaux P (1987) Deep water formation and Quaternary glaciations. Clim Dyn 2:1–10. doi: 10.1007/BF01088850 CrossRefGoogle Scholar
  15. Gleckler PJ et al (2012) Human-induced global ocean warming on multidecadal time scales. Nat Clim Change 2:524–529. doi: 10.1038/nclimate1553 Google Scholar
  16. Grossfeld K, Lohman G, Rimbu N (2008) The impact of Atlantic and Pacific Ocean sea surface temperature on the North Atlantic multidecadal variability. Tellus A 60:728–741. doi: 10.3402/tellusa.v60i4.15300 CrossRefGoogle Scholar
  17. Gualdi S et al (2013) Future climate projections. In Navarra A and Tubiana L (eds), Regional assessment of climate change in the Mediterranean, vol 1. Air, Sea, Precipitation and Water, Springer, DordrechtGoogle Scholar
  18. Hollingsworth A, Arpe K, Tiedke M, Capaldo M, Savijaervi H (1980) The performance of a medium range forecast model in winter: impact of physical parameterization. Mon Weather Rev 108:1736–1773. doi: 10.1175/1520-0493(1980)108 CrossRefGoogle Scholar
  19. Hasselmann K (1988) PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns. J Geophys Res 93:11015–11021CrossRefGoogle Scholar
  20. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 14:417–441. doi: 10.1037/h0071325 CrossRefGoogle Scholar
  21. Jenkins G, Watts D (2000) Spectral analysis and its application. Emerson-Adams Press, Boca Raton, FIGoogle Scholar
  22. Jones PD, Jonsson T, Wheeler D (1997) Extension of the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  23. Kalnay E (1996) The NCEP/NCAR 40 years reanalysis project. Bull Am Meteor Soc 77:437–471CrossRefGoogle Scholar
  24. Knight J (2009) The Atlantic multidecadal oscillation inferred from the forced climate response in coupled general circulation models. J Clim 22:1610–1625. doi: 10.1175/2008JCLI2628.1 CrossRefGoogle Scholar
  25. Krichak SO, Kishcha P, Alpert P (2002) Decadal trends of main Eurasian oscillations and the Eastern Mediterranean precipitation. Theor Appl Clim 72(3):209–230. doi: 10.1007/s007040200021 CrossRefGoogle Scholar
  26. Lamb PJ, Peppler RA (1987) North Atlantic Oscillation: concept and applications. Bull Am Meter Soc 68:1218–1225CrossRefGoogle Scholar
  27. Latif M (2004) Reconstructing, monitoring and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614. doi: 10.1175/1520-0442(2004)017<1605:RMA-PMC>2.0.CO;2 CrossRefGoogle Scholar
  28. Lionello P (ed) (2012) The climate of the Mediterranean region. From the past to the future. Elsevier, AmsterdamGoogle Scholar
  29. López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett. doi: 10.1029/2011GL050049
  30. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on the salmon production. Bull Am Meteor Soc 78:1069–1079CrossRefGoogle Scholar
  31. Mariotti A, Zeng N, Lau KM (2002) Euro-Mediterranean rainfall and ENSO—a seasonally varying relationship. Geophys Res Lett 29:L014248. doi: 10.1029/2001JL014248 CrossRefGoogle Scholar
  32. Marullo S, Artale V, Santoleri R (2011) The SST multi-decadal variability in the Atlantic-Mediterranean region and its relation to AMO. J Clim 24:4385–4401. doi: 10.1175/2011JCLI3884.1 CrossRefGoogle Scholar
  33. Masina S, di Pietro P, Navarra A (2004) Interannual to decadal variability in the North Atlantic from an ocean data assimilation system. Clim Dyn 23:531–546. doi: 10.1007/s00382-004-0453-6 CrossRefGoogle Scholar
  34. Meehl GA (2009) Decadal prediction. Bull Am Meteor Soc 90:1467–1485. doi: 10.1175/2009BAMS2778.1 CrossRefGoogle Scholar
  35. Millán M (2007) Climate/water cycle feedbacks in the Mediterranean: the role of land-use changes and the propagation of perturbations at the regional and global scale. In: Mellouki A, Ravishankara AR (eds) Regional climate variability and its Impacts in the Mediterranean area. Springer, Berlin, pp 83–101CrossRefGoogle Scholar
  36. OrtizBevia MJ, Alvarez-Garcia FJ, de AR Elvira, Liguori G, Carretero JH (2012) The Western Mediterranean summer variability and its feedbacks. Clim Dyn. doi: 10.1007/s00382-012-1409-x Google Scholar
  37. Penland C, Matrosova L (1998) Prediction of tropical Atlantic sea surface temperature anomalies using linear inverse modeling. J Clim 11:483–496. doi: 10.1175/1520-0442(1998)011 CrossRefGoogle Scholar
  38. Pires CAL, Perdigao RAP (2015) Non-Gaussian interaction information: estimation, optimization and diagnostic application of triadic wave resonance. Nonlinear Process Geophys 22:87–108. doi: 10.5194/npg-22-87-2015 CrossRefGoogle Scholar
  39. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicer M, Ansell JJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperatures measured in situ since the mid-ninetieth century: the HadSST2 dataset. J Clim 19(446):469. doi: 10.1175/JCLI3637.1 Google Scholar
  40. Rodwell MJ, Drevillon M, Frankignoul C, Hurrel JW, Pohlmann H, Stendel M, Sutton RT (2004) North Atlantic forcing off climate and its uncertainty from a multimodel experiment. Q J R Meteor Soc 130:2013–2032. doi: 10.1256/qj.03.207 CrossRefGoogle Scholar
  41. Rodriguez-Fonseca B, Janicot S, Mohino E et al (2011) Interannual and decadal SST-forced response to the West African Monsoon. Atmos Sci Lett 12:67–74. doi: 10.1002/asl.308 CrossRefGoogle Scholar
  42. Sanchez-Gómez E, OrtizBevia MJ (2003) Seasonal forecasts of North Atlantic 850hPa air temperature anomalies using singular vectors. Mon Weather Rev 131:3061–3068. doi: 10.1175/1520-0493(2003)131<3061:SFONAH>2.0.CO;2 CrossRefGoogle Scholar
  43. Schlesinger ME, Ramankutty K (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726. doi: 10.1038/367723ao CrossRefGoogle Scholar
  44. Schroeder K, Chigiatto J, Bryden HL, Boeghini M, Ismain SB (2016) Abrupt climate shift in the Western Mediterranean Sea. Sci Rep 6:23009. doi: 10.1038/srep23009 CrossRefGoogle Scholar
  45. Sun Ch, Li J, Jin F-F (2015) A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dyn 45:2083–2099. doi: 10.1007/s00382-014-2459-z CrossRefGoogle Scholar
  46. Tasambay-Salazar M, OrtizBevia MJ, Alvarez-Garcia FJ, RuizdeElvira A (2015) The Niño3.4 predictability beyond the persistence barrier. Tellus A 67:27457. doi: 10.3402/tellusa.v67.27457 CrossRefGoogle Scholar
  47. Terray L (2012) Evidence for multiple drivers of North Atlantic multi-decadal climate variability. Geophys Res Lett. doi: 10.1029/2012GL053016
  48. Ting M, Kushnir Y, Seager R, Li C (2011) Robust features of Atlantic multi-decadal variability and its climate impacts. Geophys Res Lett. doi: 10.1029/2011GL048712
  49. Trenberth K (1984) Signal versus noise in the Southern oscillation. Mon Weather Rev 112:326–332CrossRefGoogle Scholar
  50. Trigo RM, Osborn TJ, Corte-Real JM (2002) The North Atlantic Oscillation influence on Europe: climate impacts and associated physical mechanisms. Clim Res 20:9–17. doi: 10.3354/cr020009 CrossRefGoogle Scholar
  51. Uppala S (2004) ERA-40: ECMWF 45-year reanalysis of the global atmosphere and surface conditions 1957–2002, Newsletter 101. European Center for Medium Range Weather Forecasts, ReadingGoogle Scholar
  52. von Storch H, Burger G, Schnur R, von Storch JS (1995) Principal oscillation patterns: a review. J Clim 8:377–400CrossRefGoogle Scholar
  53. Wilks SS (1962) Mathematical statistics. Wiley, New YorkGoogle Scholar
  54. Willmott CJ, Matsuura K (2001) Terrestrial air temperature and precipitation monthly and annual time series (1930–1999). http://climate.geog.udel.edu/~climate/html_pages/README_ghcn_ts2.html
  55. Wyatt MG, Kratsov S, Tsonis A (2012) Atlantic multidecadal oscillation and Northern Hemisphere’s climate variability. Clim Dyn 38:929–949CrossRefGoogle Scholar
  56. Wyatt MG, Peters JM (2012) A secularly varying hemispheric climate-signal propagation previously detected in instrumental record and proxy data not detected in CMIP3 data base. Springerplus. doi: 10.1186/2193-1801-1-68
  57. Zanchettin D, Franks SW, Traverso P, Tomasino M (2008) On ENSO impacts on European wintertime rainfalls and their modulation by the NAO and the Pacific multi-decadal variability described through the PDO Index. Int J Climatol 28:995–1006. doi: 10.1002/joc.1601 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad de AlcaláAlcalá de Henares, MadridSpain
  2. 2.Facultad de Informatica y ElectronicaEscuela Superior Politecnica de ChimborazoRiobambaEcuador

Personalised recommendations