Climate Dynamics

, Volume 51, Issue 11–12, pp 4489–4510 | Cite as

Is the global atmospheric model MRI-AGCM3.2 better than the CMIP5 atmospheric models in simulating precipitation over East Asia?

  • Shoji Kusunoki


The reproducibility of precipitation over East Asia (110–150°E, 20–50°N) by the Meteorological Research Institute-Atmospheric General Circulation Model version 3.2 (MRI-AGCM3.2) was investigated and compared with those by global atmospheric models participated in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The 20, 60 and 180-km grid size version of this model were used to evaluate the dependence of model performance on horizontal resolution. The dependence of cumulus convection scheme on model performance was also investigated. All the MRI-AGCM3.2 models and the CMIP5 models were forced with observed historical sea surface temperatures for the period 1979–2003 (25 years). The reproducibility of the MRI-AGCM3.2 models is higher or comparable to that of the CMIP5 models for seasonal average precipitation, the seasonal March of rainy zone and extreme precipitation events. Especially in summer, the advantage of the MRI-AGCM3.2 models over the CMIP5 models is striking in terms of various skill measures. This is partly due to the higher horizontal resolution of the MRI-AGCM3.2 models, but the performance of models is also sensitive to and depends on cumulus convection scheme. The better simulation of summer precipitation over East Asia by the MRI-AGCM3.2 models can be partly attributed to the better simulation of precipitation, the West Pacific Subtropical High and the local Hadley circulation in the tropics. This study highlights that higher reproducibility of summertime precipitation over East Asia requires proper simulation not only for tropical circulation but also for the strong dynamical linkage between precipitation over East Asia and tropical circulation.


Precipitation East Asia Global atmospheric model High horizontal resolution Cumulus convection scheme The West Pacific Subtropical High 



This work was conducted under the framework of “the Development of Basic Technology for Risk Information on Climate Change” supported by the SOUSEI Program of the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan. This study was supported by the Environment Research and Technology Development Fund (2-1503) of the Ministry of the Environment, Japan. We also acknowledge the “Data Integration and Analysis System(DIAS)” Fund for National Key Technology from the MEXT of Japan. We acknowledge the international modeling groups for providing model data for our analysis, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for collecting and archiving the CMIP5 and CMIP3 multi model data, and the Joint Scientific Committee (JSC)/CLIVAR Working Group on Coupled Modelling (WGCM). The data archive at the Lawrence Livermore National Institute (LLNI) is supported by the Office of Science, U.S. Department of Energy. We also thank the anonymous reviewers whose valuable comments and suggestions greatly improved the manuscript. Thanks are extended to the support and collaboration by Drs. R. Mizuta, K. Yoshida, O. Arakawa, T. Ose, A. Kitoh and I. Takayabu.

Supplementary material

382_2016_3335_MOESM1_ESM.doc (4.9 mb)
Supplementary material 1 (DOC 5018 kb)


  1. Adler RF, Huffman GJ, Chang A, Ferrano R, Xie PP, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology preject (GPCP) monthly precipitation analysis (1979–present). J Hydrometeor 4:1147–1167. doi: 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 CrossRefGoogle Scholar
  2. Bengtsson L, Hodges KI, Keenlyside N (2009) Will extratropical storms intensify in a warmer climate? J Clim 22:2276–2301. doi: 10.1175/2008JCLI2678.1 CrossRefGoogle Scholar
  3. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630. doi: 10.1175/JCLI3884.1 CrossRefGoogle Scholar
  4. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  5. Ding YH (1994) The summer monsoon in East Asia. In: Monsoons over China. Kluwer Academic, pp 1–90Google Scholar
  6. Ding YH (2004) Seasonal March of the East-Asian summer monsoon. In: Chang C-P (ed) East Asian monsoons. World Scientific, pp 3–53Google Scholar
  7. Ding YH, Sikka DR (2006) Synoptic systems and weather. In: Wang B (ed) The Asian monsoon. Springer, pp 131–201Google Scholar
  8. Endo H, Kitoh A, Ose T, Mizuta R, Kusunoki S (2012) Future changes and uncertainties in Asian precipitation simulated by multiphysics and multi-sea surface temperature ensemble experiments with high-resolution Meteorological Research Institute atmospheric general circulation models (MRI-AGCMs). J Geophys Res 117:D16118. doi: 10.1029/2012JD017874 CrossRefGoogle Scholar
  9. Feng L, Zhou T, Wu B, Li T, Luo JL (2011) Projection of future precipitation change over China with a high-resolution global atmospheric model. Adv Atmos Sci 28(2):464–476. doi: 10.1007/s00376-010-0016-1 CrossRefGoogle Scholar
  10. Frich P, Alexander LV, Della-Marta P, Gleason B, Haylock M, Klein Tank AMG, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi: 10.3354/cr019193 CrossRefGoogle Scholar
  11. Gao X, Xu Y, Zhao Z, Pal JS, Giorgi F (2006) On the role of resolution and topography in the simulation of East Asia precipitation. Theor Appl Climatol 86:173–185. doi: 10.1007/s00704-005-0214-4 CrossRefGoogle Scholar
  12. Gleckler PJ, Taylor KE, Doutriaux C (2008) Performance metrics for climate models. J Geophys Res 113:D06104. doi: 10.1029/2007JD008972 CrossRefGoogle Scholar
  13. Guo Z, Zhou T, Wang M, Qian Y (2015) Impact of cloud radiative heating on East Asian summer monsoon circulation. Environ Res Lett 10:074014. doi: 10.1088/1748-9326/10/7/074014 CrossRefGoogle Scholar
  14. He C, Zhou T (2014) The two interannual variability modes of the Western North Pacific Subtropical High simulated by 28 CMIP5-AMIP models. Clim Dyn 43:2455–2469. doi: 10.1007/s00382-014-2068-x CrossRefGoogle Scholar
  15. Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeor 2:36–50. doi: 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 CrossRefGoogle Scholar
  16. Huffman GJ, Adler RF, Bolvin DT, Gu G, Nelkin EJ, Bowman KP, Hong Y, Stocker EF, Wolff DB (2007) The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeor 8:38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  17. IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 996Google Scholar
  18. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535Google Scholar
  19. IPCC (Intergovernmental Panel on Climate Change) (2001) Climate change 2001: The scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 881Google Scholar
  20. Kain JS, Fritsch JM (1990) A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci 47:2784–2802. doi: 10.1175/1520-0469(1990)047<2784:AODEPM>2.0.CO;2 CrossRefGoogle Scholar
  21. Kanada S, Nakano M, Hayashi S, Kato T, Nakamura M, Kurihara K, Kitoh A (2008) Reproducibility of maximum daily precipitation amount over Japan by a high-resolution non-hydrostatic model. SOLA 4:105–108. doi: 10.2151/sola.2008-027 CrossRefGoogle Scholar
  22. Kang IS, Jin K, Wang B, Lau KM, Shukla J, Krishnamurthy V, Schubert SD, Wailser DE, Stern WF, Kitoh A, Meehl GA, Kanamitsu M, Galin VY, Satyan V, Park CK, Liu Y (2002) Intercomparison of the climatological variations of Asian summer monsoon precipitation simulated by 10 GCMs. Clim Dyn 19:383–395. doi: 10.1007/s00382-002-0245-9 CrossRefGoogle Scholar
  23. Kitoh A, Kusunoki S (2008) East Asian summer monsoon simulation by a 20-km mesh AGCM. Clim Dyn 31:389–401. doi: 10.1007/s00382-007-0285-2 CrossRefGoogle Scholar
  24. Kitoh A, Ose T, Kurihara K, Kusunoki S, Sugi M, KAKUSHIN Team-3 Modeling Group (2009) Projection of changes in future weather extremes using super-high-resolution global and regional atmospheric models in the KAKUSHIN Program: results of preliminary experiments. Hydrol Res Lett 3:49–53. doi: 10.3178/HRL.3.49 CrossRefGoogle Scholar
  25. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48. doi: 10.2151/jmsj.2015-001 CrossRefGoogle Scholar
  26. Kurihara K (1989) A climatological study on the relationship between the Japanese summer weather and the subtropical high in the western northern Pacific. Geophys Mag 43:45–104Google Scholar
  27. Kusunoki S, Arakawa O (2012) Change in the precipitation intensity of the East Asian summer monsoon projected by CMIP3 models. Clim Dyn 38:2055–2072. doi: 10.1007/s00382-011-1234-7 CrossRefGoogle Scholar
  28. Kusunoki S, Arakawa O (2015) Are CMIP5 models better than CMIP3 models in simulating precipitation over East Asia? J Clim 28:5601–5621. doi: 10.1175/JCLI-D-14-00585.1 CrossRefGoogle Scholar
  29. Kusunoki S, Mizuta R (2013) Changes in precipitation intensity over East Asia during the 20th and 21st centuries simulated by a global atmospheric model with a 60 km grid size. J Geophys Res Atmos 118:11007–11016. doi: 10.1002/jgrd.50877 CrossRefGoogle Scholar
  30. Kusunoki S, Sugi M, Kitoh A, Kobayashi C, Takano K (2001) Atmospheric seasonal predictability experiments by the JMA AGCM. J Meteorol Soc Jpn 79:1183–1206. doi: 10.2151/jmsj.79.1183 CrossRefGoogle Scholar
  31. Kusunoki S, Yoshimura J, Yoshimura H, Noda A, Oouchi K, Mizuta R (2006) Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J Meteorol Soc Jpn 84:581–611. doi: 10.2151/jmsj.84.581 CrossRefGoogle Scholar
  32. Kusunoki S, Mizuta R, Hosaka M (2015) Future changes in precipitation intensity over the Arctic projected by a global atmospheric model with a 60-km grid size. Polar Sci 9:277–292. doi: 10.2467/mripapers.65.15 CrossRefGoogle Scholar
  33. Lambert SJ, Boer GJ (2001) CMIP1 evaluation and intercomparison of coupled climate models. Clim Dyn 17:83–106. doi: 10.1007/PL00013736 CrossRefGoogle Scholar
  34. Lau K-M, Li M-T (1984) The monsoon of East Asia and its global association—a survey. Bull Am Meteorol Soc 65:114–125. doi: 10.1175/1520-0477(1984)065<0114:TMOEAA>2.0.CO;2 CrossRefGoogle Scholar
  35. Lau KM, Yang S (1996) Seasonal variation, abrupt transition, and intraseasonal variability associated with the Asian summer monsoon in the GLA GCM. J Clim 9:965–985. doi: 10.1175/1520-0442(1996)009<0965:SVATAI>2.0.CO;2 CrossRefGoogle Scholar
  36. Lau KM, Kim JH, Sud Y (1996) Intercomparison of hydrologic processes in AMIP GCMs. Bull Am Meteorol Soc 77:2209–2227. doi: 10.1175/1520-0477(1996)077<2209:IOHPIA>2.0.CO;2 CrossRefGoogle Scholar
  37. Liang XZ, Wang WC, Samel AN (2001) Biases in AMIP model simulations of the east China monsoon system. Clim Dyn 17:291–304. doi: 10.1007/s003820000136 CrossRefGoogle Scholar
  38. Mizuta R, Yoshimura H, Murakami H, Matsueda M, Endo H, Ose T, Kamiguchi K, Hosaka M, Sugi M, Yukimoto S, Kusunoki S, Kitoh A (2012) Climate simulations using MRI-AGCM3.2 with 20-km grid. J Meteorol Soc Jpn 90A:233–258. doi: 10.2151/jmsj.2012-A12 CrossRefGoogle Scholar
  39. Murakami H, Sugi M (2010) Effect of model resolution on tropical cyclone climate projections. SOLA 6:73–76. doi: 10.2151/sola.2010-019 CrossRefGoogle Scholar
  40. Murakami H, Wang Y, Yoshimura H, Mizuta R, Sugi M, Shindo E, Adachi Y, Yukimoto S, Hosaka M, Kusunoki S, Ose T, Kitoh A (2012a) Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM. J Clim 25:3237–3260. doi: 10.1175/JCLI-D-11-00415.1 CrossRefGoogle Scholar
  41. Murakami H, Mizuta R, Shindo E (2012b) Future changes in tropical cyclone activity projected by multi-physics and multi-SST ensemble experiments using the 60-km-mesh MRI-AGCM. Clim Dyn 39:2569–2584. doi: 10.1007/s00382-011-1223-x CrossRefGoogle Scholar
  42. Murakami H, Sugi M, Kitoh A (2013a) Future changes in tropical cyclone activity in the North Indian Ocean projected by high-resolution MRI-AGCMs. Clim Dyn 40:1949–1968. doi: 10.1007/s00382-012-1407-z CrossRefGoogle Scholar
  43. Murakami H, Wang B, Li T, Kitoh A (2013b) Projected increase in tropical cyclones near Hawaii. Nat Clim Change 3:749–754. doi: 10.1038/NCLIMATE1890 CrossRefGoogle Scholar
  44. Ninomiya K, Kobayashi C (1999) Precipitation and moisture balance of the Asian summer monsoon in 1991. Part II: moisture transport and moisture balance. J Meteorol Soc Jpn 77:77–99CrossRefGoogle Scholar
  45. Ogata T, Ueda H, Inoue T, Hayasaki M, Yoshida A, Watanabe S, Kira M, Ooshiro M, Kumai A (2014) Projected future changes in the Asian monsoon: a comparison of CMIP3 and CMIP5 model results. J Meteorol Soc Jpn 92:207–225. doi: 10.2151/jmsj.2014-302 CrossRefGoogle Scholar
  46. Randall DA, Pan DM (1993) Implementation of the Arakawa-Schubert cumulus parameterization with a prognostic closure. In: The representation of cumulus convection in numerical models, Meteorological Monographs, vol 24, no 46, chapter 11, pp 137–147Google Scholar
  47. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  48. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89:303–311. doi: 10.1175/BAMS-89-3-303 CrossRefGoogle Scholar
  49. Shibata K, Deushi M, Sekiyama TT, Yoshimura H (2004) Development of an MRI chemical transport model for the study of stratospheric chemistry. Pap Meteorol Geophys 55:75–119. doi: 10.2467/mripapers.55.75 CrossRefGoogle Scholar
  50. Song F, Zhou T (2014) Interannual variability of East Asian summer monsoon simulated by CMIP3 and CMIP5 AGCMs: skill dependence on Indian Ocean–western Pacific anticyclone teleconnection. J Clim 27:1679–1697. doi: 10.1175/JCLI-D-13-00248.1 CrossRefGoogle Scholar
  51. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner AG, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744. doi: 10.1007/S00382-012-1607-6 CrossRefGoogle Scholar
  52. Sugi M, Yoshimura J (2012) Decreasing trend of tropical cyclone frequency in 228-year high-resolution AGCM simulations. Geophys Res Lett 39:L19805. doi: 10.1029/2012GL053360 CrossRefGoogle Scholar
  53. Tao SY, Chen LX (1987) A review of recent research on the East Asian summer monsoon in China. In: Chang CP, Krishnamurti TN (eds) Monsoon meteorology. Oxford University Press, Oxford, pp 60–92Google Scholar
  54. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi: 10.1029/2000JD900719 CrossRefGoogle Scholar
  55. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2 CrossRefGoogle Scholar
  56. Tu K, Yan ZW, Zhang XB, Dong WJ (2009) Simulation of precipitation in monsoon regions of China by CMIP3 models. Atmos Ocean Sci Lett 2:194–200CrossRefGoogle Scholar
  57. Wang B, Ho L (2002) Rainy season of the Asian-Pacific summer monsoon. J Clim 15:386–398. doi: 10.1175/1520-0442(2002)015<0386:RSOTAP>2.0.CO;2 CrossRefGoogle Scholar
  58. Xie P, Arkin P (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates and numerical model outputs. Bull Am Meteorol Soc 78:2539–2558. doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 CrossRefGoogle Scholar
  59. Yin X, Gruber A, Arkin P (2004) Comparison of the GPCP and CMAP merged gauge-satellite monthly precipitation products for the period 1979-2001. J Hydrometeorol 5:1207–1222. doi: 10.1175/JHM-392.1 CrossRefGoogle Scholar
  60. Yoshimura H, Mizuta R, Murakami H (2015) A spectral cumulus parameterization scheme interpolating between two convective updrafts with semi-lagrangian calculation of transport by compensatory subsidence. Mon Weather Rev 143:597–621. doi: 10.1175/MWR-D-14-00068.1 CrossRefGoogle Scholar
  61. Yukimoto S, Yoshimura H, Hosaka M, Sakami T, Tsujino H, Hirabara M, Tanaka T, Deushi M, Obata A, Nakano H, Adachi Y, Shindo E, Yabu S, Ose T, Kitoh A (2011) Meteorological Research Institute-Earth System Model version 1 (MRI-ESM1)—Model description. Technical Reports of the Meteorological Research Institute 64, p 88Google Scholar
  62. Zhou T, Li Z (2002) Simulation of the east asian summer monsoon using a variable resolution atmospheric GCM. Clim Dyn 19:167–180. doi: 10.1007/s00382-001-0214-8 CrossRefGoogle Scholar
  63. Zhou T, Yu R (2005) Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res 110:D08104. doi: 10.1029/2004JD005413 CrossRefGoogle Scholar
  64. Zhou T, Wu B, Wang B (2009) How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian monsoon? J Clim 22:1159–1173. doi: 10.1175/2008JCLI2245.1 CrossRefGoogle Scholar
  65. Zou L, Zhou T (2013) Can a regional ocean-atmosphere coupled model improve the simulation of the interannual variability of the western North Pacific summer monsoon? J Clim 26:2353–2367. doi: 10.1175/JCLI-D-11-00722.1 CrossRefGoogle Scholar
  66. Zou L, Zhou T, Li L, Zhang J (2010) East China summer rainfall variability of 1958–2000: dynamical downscaling with a variable-resolution AGCM. J Clim 23:6394–6408. doi: 10.1175/2010JCLI3689.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Climate Research DepartmentMeteorological Research InstituteTsukubaJapan

Personalised recommendations