Advertisement

Climate Dynamics

, Volume 48, Issue 11–12, pp 3903–3918 | Cite as

Cold season Africa–Asia multidecadal teleconnection pattern and its relation to the Atlantic multidecadal variability

  • Cheng Sun
  • Jianping Li
  • Ruiqiang Ding
  • Ze Jin
Article

Abstract

A prominent teleconnection pattern of multidecadal variability of cold season (November to April) upper-level atmospheric circulation over North Africa and Eurasia (NA–EA) is revealed by empirical orthogonal function analysis of the Twentieth Century Reanalysis data. This teleconnection pattern is characterized by an eastward propagating wave train with a zonal wavenumber of 5–6 between 20° and 40°N, extending from the northwest coast of Africa to East Asia, and thus is referred to as the Africa–Asia multidecadal teleconnection pattern (AAMT). One-point correlation maps show that the teleconnectivity of AAMT is strong and further demonstrate the existence of the AAMT. The AAMT shapes the spatial structure of multidecadal change in atmospheric circulation over the NA–EA region, and in particular the AAMT pattern and associated fields show similar structures to the change occurring around the early 1960s. A strong in-phase relationship is observed between the AAMT and Atlantic multidecadal variability (AMV) and this connection is mainly due to Rossby wave dynamics. Barotropic modeling results suggest that the upper-level Rossby wave source generated by the AMV can excite the AAMT wave train, and Rossby wave ray tracing analysis further highlights the role of the Asian jet stream in guiding the wave train to East Asia. The AAMT acts as an atmospheric bridge conveying the influence of AMV onto the downstream multidecadal climate variability. The AMV is closely related to the coordinated change in surface and tropospheric air temperatures over Northwest Africa, the Arabian Peninsula and Central China, which may result from the adiabatic expansion/compression of air associated with the AAMT.

Keywords

Atlantic multidecadal variability Africa–Asia multidecadal teleconnection pattern Rossby wave train Africa–Asia multidecadal climate variability 

Notes

Acknowledgments

The authors wish to thank the anonymous reviewers for their constructive comments that significantly improved the quality of this paper. This work was jointly supported by the National Key Research and Development Plan (2016YFA0601801), the National Science Foundation of China (41290255 and 41405128), and the National Programme on Global Change and Air-Sea Interaction (GASI-IPOVAI-06 and GASI-IPOVAI-03).

Supplementary material

382_2016_3309_MOESM1_ESM.docx (3.9 mb)
Supplementary material 1 (DOCX 4015 kb)

Reference

  1. Alexander MA, Halimeda Kilbourne K, Nye JA (2014) Climate variability during warm and cold phases of the Atlantic Multidecadal Oscillation (AMO) 1871–2008. J Marine Syst 133:14–26CrossRefGoogle Scholar
  2. Booth BB, Dunstone NJ, Halloran PR, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484(7393):228–232. doi: 10.1038/nature10946 CrossRefGoogle Scholar
  3. Branstator G (2002) Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation. J Clim 15(14):1893–1910CrossRefGoogle Scholar
  4. Bretherton CS, Smith C, Wallace JM (1992) An intercomparison of methods for finding coupled patterns in climate data. J Clim 5(6):541–560CrossRefGoogle Scholar
  5. Compo GP, Whitaker JS, Sardeshmukh PD et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28CrossRefGoogle Scholar
  6. Corti S, Weisheimer A, Palmer TN, Doblas-Reyes FJ, Magnusson L (2012) Reliability of decadal predictions. Geophys Res Lett. doi: 10.1029/2012gl053354 Google Scholar
  7. DelSole T, Tippett MK, Shukla J (2011) A significant component of unforced multidecadal variability in the recent acceleration of global warming. J Clim 24(3):909–926. doi: 10.1175/2010jcli3659.1 CrossRefGoogle Scholar
  8. Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16(9):661–676CrossRefGoogle Scholar
  9. Delworth TL, Zhang R, Mann ME (2007) Decadal to centennial variability of the Atlantic from observations and models. In: Ocean circulation: mechanisms and impacts. Geophysical monograph series 173. American Geophysical Union, Washington, DC, pp 131–148Google Scholar
  10. Ding QH, Wang B (2005) Circumglobal teleconnection in the Northern Hemisphere summer. J Clim 18(17):3483–3505CrossRefGoogle Scholar
  11. Ding YH, Liu YJ, Liang SJ, Ma XQ, Zhang YX, Si D, Liang P, Song YF, Zhang J (2014) Interdecadal variability of the east asian winter monsoon and its possible links to global climate change. J Meteorol Res 28(5):693–713. doi: 10.1007/s13351-014-4046-y CrossRefGoogle Scholar
  12. Enfield DB, Mestas-Nunez AM, Trimble PJ (2001) The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental US. Geophys Res Lett 28(10):2077–2080CrossRefGoogle Scholar
  13. Enomoto T, Hoskins BJ, Matsuda Y (2003) The formation mechanism of the Bonin high in August. Q J R Meteorol Soc 129(587):157–178. doi: 10.1256/gj.01.211 CrossRefGoogle Scholar
  14. Folland CK, Rayner NA, Brown SJ, Smith TM, Shen SSP, Parker DE, Macadam I, Jones PD, Jones RN, Nicholls N, Sexton DMH (2001) Global temperature change and its uncertainties since 1861. Geophys Res Lett 28(13):2621–2624. doi: 10.1029/2001gl012877 CrossRefGoogle Scholar
  15. Gastineau G, Frankignoul C (2011) Cold-season atmospheric response to the natural variability of the Atlantic meridional overturning circulation. Clim Dyn 39(1–2):37–57. doi: 10.1007/s00382-011-1109-y Google Scholar
  16. Gray ST (2004) A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 A.D. Geophys Res Lett. doi: 10.1029/2004gl019932 Google Scholar
  17. Greatbatch RJ (2000) The North Atlantic Oscillation. Stoch Environ Res Risk Assess 14(4–5):213–242CrossRefGoogle Scholar
  18. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys. doi: 10.1029/2010rg000345 Google Scholar
  19. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations-the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. doi: 10.1002/joc.3711 CrossRefGoogle Scholar
  20. Hodson DLR, Sutton RT, Cassou C, Keenlyside N, Okumura Y, Zhou TJ (2010) Climate impacts of recent multidecadal changes in Atlantic Ocean sea surface temperature: a multimodel comparison. Clim Dyn 34(7–8):1041–1058CrossRefGoogle Scholar
  21. Hoskins BJ, Ambrizzi T (1993) Rossby-wave propagation on a realistic longitudinally varying flow. J Atmos Sci 50(12):1661–1671CrossRefGoogle Scholar
  22. Hoskins BJ, Karoly DJ (1981) The steady linear response of a spherical atmosphere to thermal and orographic forcing. J Atmos Sci 38(6):1179–1196CrossRefGoogle Scholar
  23. Hsu HH, Lin SH (1992) Global teleconnections in the 250-mb streamfunction field during the Northern-Hemisphere winter. Mon Weather Rev 120(7):1169–1190CrossRefGoogle Scholar
  24. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res. doi: 10.1029/2011jd017139 Google Scholar
  25. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett. doi: 10.1029/2005gl024233 Google Scholar
  26. Kucharski F, Molteni F, Yoo JH (2006) SST forcing of decadal Indian Monsoon rainfall variability. Geophys Res Lett. doi: 10.1029/2005gl025371 Google Scholar
  27. Kucharski F, Bracco A, Yoo JH, Tompkins AM, Feudale L, Ruti P, Dell’Aquila A (2009) A Gill-Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Q J R Meteorol Soc 135(640):569–579. doi: 10.1002/qj.406 CrossRefGoogle Scholar
  28. Latif M, Keenlyside NS (2011) A perspective on decadal climate variability and predictability. Deep Sea Res Part II 58(17–18):1880–1894. doi: 10.1016/j.dsr2.2010.10.066 CrossRefGoogle Scholar
  29. Latif M, Boning C, Willebrand J, Biastoch A, Dengg J, Keenlyside N, Schweckendiek U, Madec G (2006a) Is the thermohaline circulation changing? J Clim 19(18):4631–4637CrossRefGoogle Scholar
  30. Latif M, Collins M, Pohlmann H, Keenlyside N (2006b) A review of predictability studies of Atlantic sector climate on decadal time scales. J Clim 19(23):5971–5987CrossRefGoogle Scholar
  31. Li S, Bates GT (2007) Influence of the Atlantic multidecadal oscillation on the winter climate of East China. Adv Atmos Sci 24(1):126–135. doi: 10.1007/s00376-007-0126-6 CrossRefGoogle Scholar
  32. Li S, Perlwitz J, Quan X, Hoerling MP (2008) Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys Res Lett. doi: 10.1029/2007gl032901 Google Scholar
  33. Li JP, Sun C, Jin FF (2013) NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys Res Lett 40(20):5497–5502CrossRefGoogle Scholar
  34. Li YJ, Li JP, Jin FF, Zhao S (2015) Interhemispheric propagation of stationary rossby waves in a horizontally nonuniform background flow. J Atmos Sci 72(8):3233–3256. doi: 10.1175/Jas-D-14-0239.1 CrossRefGoogle Scholar
  35. Lu RY, Oh JH, Kim BJ (2002) A teleconnection pattern in upper-level meridional wind over the North African and Eurasian continent in summer. Tellus A 54(1):44–55CrossRefGoogle Scholar
  36. Lu RY, Dong BW, Ding H (2006) Impact of the Atlantic multidecadal oscillation on the Asian summer monsoon. Geophys Res Lett. doi: 10.1029/2006GL027655 Google Scholar
  37. Nigam S, Guan B, Ruiz-Barradas A (2011) Key role of the Atlantic multidecadal oscillation in 20th century drought and wet periods over the Great Plains. Geophys Res Lett. doi: 10.1029/2011gl048650 Google Scholar
  38. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110(7):699–706CrossRefGoogle Scholar
  39. Omrani NE, Bader J, Keenlyside NS, Manzini E (2015) Troposphere–stratosphere response to large-scale North Atlantic Ocean variability in an atmosphere/ocean coupled model. Clim Dyn. doi: 10.1007/s00382-015-2654-6 Google Scholar
  40. Plumb RA (1985) On the 3-dimensional propagation of stationary waves. J Atmos Sci 42(3):217–229CrossRefGoogle Scholar
  41. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  42. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367(6465):723–726CrossRefGoogle Scholar
  43. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi: 10.1175/2007jcli2100.1 CrossRefGoogle Scholar
  44. Sun C, Li JP, Jin FF, Ding RQ (2013) Sea surface temperature inter-hemispheric dipole and its relation to tropical precipitation. Environ Res Lett. doi: 10.1088/1748-9326/8/4/044006 Google Scholar
  45. Sun C, Li JP, Jin FF, Xie F (2014) Contrasting meridional structures of stratospheric and tropospheric planetary wave variability in the Northern Hemisphere. Tellus A. doi: 10.3402/Tellusa.V66.25303 Google Scholar
  46. Sun C, Li JP, Jin FF (2015a) A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dyn 45(7–8):2083–2099. doi: 10.1007/s00382-014-2459-z CrossRefGoogle Scholar
  47. Sun C, Li JP, Zhao S (2015b) Remote influence of Atlantic multidecadal variability on Siberian warm season precipitation. Sci Rep. doi: 10.1038/srep16853 Google Scholar
  48. Sun C, Li JP, Ding RQ (2016) Strengthening relationship between ENSO and western Russian summer surface temperature. Geophys Res Lett 43(2):843–851. doi: 10.1002/2015GL067503 CrossRefGoogle Scholar
  49. Sutton RT, Hodson DLR (2003) Influence of the ocean on North Atlantic climate variability 1871–1999. J Clim 16(20):3296–3313CrossRefGoogle Scholar
  50. Sutton RT, Hodson DLR (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309(5731):115–118. doi: 10.1126/science.1109496 CrossRefGoogle Scholar
  51. Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20(5):891–907. doi: 10.1175/jcli4038.1 CrossRefGoogle Scholar
  52. Tang QH, Zhang XJ, Yang XH, Francis JA (2013) Cold winter extremes in northern continents linked to Arctic sea ice loss. Environ Res Lett. doi: 10.1088/1748-9326/8/1/014036 Google Scholar
  53. Teng H, Branstator G (2012) A zonal wavenumber 3 pattern of Northern Hemisphere Wintertime Planetary wave variability at high latitudes. J Clim 25(19):6756–6769. doi: 10.1175/jcli-d-11-00664.1 CrossRefGoogle Scholar
  54. Ting MF, Kushnir Y, Seager R, Li CH (2009) Forced and internal twentieth-century SST trends in the North Atlantic. J Clim 22(6):1469–1481. doi: 10.1175/2008jcli2561.1 CrossRefGoogle Scholar
  55. Vellinga M, Wu PL (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511. doi: 10.1175/3219.1 CrossRefGoogle Scholar
  56. Wallace JM, Zhang Y, Bajuk L (1996) Interpretation of interdecadal trends in Northern Hemisphere surface air temperature. J Clim 9(2):249–259CrossRefGoogle Scholar
  57. Wang Y, Li S, Luo D (2009) Seasonal response of Asian monsoonal climate to the Atlantic multidecadal oscillation. J Geophys Res. doi: 10.1029/2008jd010929 Google Scholar
  58. Wang ZM, Zhang XD, Guan ZY, Sun B, Yang X, Liu CY (2015) An atmospheric origin of the multi-decadal bipolar seesaw. Sci Rep. doi: 10.1038/Srep08909 Google Scholar
  59. Watanabe M (2004) Asian jet waveguide and a downstream extension of the North Atlantic Oscillation. J Clim 17(24):4674–4691CrossRefGoogle Scholar
  60. Wu ZW, Zhang P (2015) Interdecadal variability of the mega-ENSO-NAO synchronization in winter. Clim Dyn 45(3–4):1117–1128CrossRefGoogle Scholar
  61. Wu ZW, Li JP, Jiang ZH, He JH (2011) Predictable climate dynamics of abnormal East Asian winter monsoon: once-in-a-century snowstorms in 2007/2008 winter. Clim Dyn 37(7–8):1661–1669CrossRefGoogle Scholar
  62. Wu ZW, Li JP, Jiang ZH, Ma TT (2012) Modulation of the Tibetan Plateau Snow cover on the ENSO teleconnections: from the East Asian summer monsoon perspective. J Clim 25(7):2481–2489. doi: 10.1175/Jcli-D-11-00135.1 CrossRefGoogle Scholar
  63. Wu ZW, Zhang P, Chen H, Li Y (2015) Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? Clim Dyn. doi: 10.1007/s00382-015-2775-y Google Scholar
  64. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett. doi: 10.1029/2006gl026267 Google Scholar
  65. Zhang R, Delworth TL, Held IM (2007) Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? Geophys Res Lett. doi: 10.1029/2006gl028683 Google Scholar
  66. Zhou YF, Wu ZW (2016) Possible impacts of mega-El Niño/Southern oscillation and Atlantic multidecadal oscillation on Eurasian heat wave frequency variability. Q J R Meteorol Soc. doi: 10.1002/qj.2759 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cheng Sun
    • 1
    • 2
  • Jianping Li
    • 1
    • 2
  • Ruiqiang Ding
    • 3
    • 4
  • Ze Jin
    • 5
  1. 1.College of Global Change and Earth System Science (GCESS)Beijing Normal UniversityBeijingChina
  2. 2.Joint Center for Global Change StudiesBeijingChina
  3. 3.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  4. 4.Plateau Atmosphere and Environment Key Laboratory of Sichuan ProvinceChengdu University of Information TechnologyChengduChina
  5. 5.Department of Atmospheric ScienceYunnan UniversityKunmingChina

Personalised recommendations