Climate Dynamics

, Volume 48, Issue 11–12, pp 3725–3740 | Cite as

Influence of seaway changes during the Pliocene on tropical Pacific climate in the Kiel climate model: mean state, annual cycle, ENSO, and their interactions

  • Zhaoyang SongEmail author
  • Mojib Latif
  • Wonsun Park
  • Uta Krebs-Kanzow
  • Birgit Schneider


The El Niño/Southern Oscillation (ENSO) is the leading mode of tropical Pacific interannual variability in the present-day climate. Available proxy evidence suggests that ENSO also existed during past climates, for example during the Pliocene extending from about 5.3 million to about 2.6 million years BP. Here we investigate the influences of the Panama Seaway closing and Indonesian Passages narrowing, and also of atmospheric carbon dioxide (CO2) on the tropical Pacific mean climate and annual cycle, and their combined impact on ENSO during the Pliocene. To this end the Kiel Climate Model), a global climate model, is employed to study the influences of the changing geometry and CO2-concentration. We find that ENSO is sensitive to the closing of the Panama Seaway, with ENSO amplitude being reduced by about 15–20 %. The narrowing of the Indonesian Passages enhances ENSO strength but only by about 6 %. ENSO period changes are modest and the spectral ENSO peak stays rather broad. Annual cycle changes are more prominent. An intensification of the annual cycle by about 50 % is simulated in response to the closing of the Panama Seaway, which is largely attributed to the strengthening of meridional wind stress. In comparison to the closing of the Panama Seaway, the narrowing of the Indonesian Passages only drives relatively weak changes in the annual cycle. A robust relationship is found such that ENSO amplitude strengthens when the annual cycle amplitude weakens.


Gateway Panama Seaway Indonesian Passages Paleoclimate modeling Annual cycle ENSO 



This study was supported by the Excellence Cluster “The Future Ocean” at Kiel University and the SFB 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”, which both are sponsored by the German Science Foundation (DFG). The model simulations were conducted at the Computing Center of Kiel University. Zhaoyang Song is a Ph.D. student, sponsored by the Chinese Scholarship Council (CSC).

Supplementary material

382_2016_3298_MOESM1_ESM.docx (869 kb)
Supplementary material 1 (DOCX 868 kb)


  1. An S-I, Choi J (2013) Inverse relationship between the equatorial eastern Pacific annual-cycle and ENSO amplitudes in a coupled general circulation model. Clim Dyn 40(3–4):663–675. doi: 10.1007/s00382-012-1403-3 CrossRefGoogle Scholar
  2. Anderson DL, McCreary JP (1985) Slowly propagating disturbances in a coupled ocean–atmosphere model. J Atmos Sci 42(6):615–630. doi: 10.1175/1520-0469(1985)042<0615:SPDIAC>2.0.CO;2 CrossRefGoogle Scholar
  3. Bellenger H et al (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018. doi: 10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  4. Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97(3):163–172. doi: 10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2 CrossRefGoogle Scholar
  5. Brierley CM (2015) Interannual climate variability seen in the Pliocene Model Intercomparison Project. Clim Past Discuss 10(5):3787–3820. doi: 10.5194/cpd-10-3787-2014 CrossRefGoogle Scholar
  6. Brierley CM, Fedorov AV, Liu Z, Herbert TD, Lawrence KT, LaRiviere JP (2009) Greatly expanded tropical warm pool and weakened Hadley circulation in the early Pliocene. Science 323(5922):1714–1718. doi: 10.1126/science.1167625 CrossRefGoogle Scholar
  7. Cane MA, Molnar P (2001) Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411(6834):157–162. doi: 10.1038/35075500 CrossRefGoogle Scholar
  8. Chang P, Wang B, Li T, Ji L (1994) Interactions between the seasonal cycle and the Southern Oscillation-Frequency entrainment and chaos in a coupled ocean–atmosphere model. Geophys Res Lett 21(25):2817–2820. doi: 10.1029/94GL02759 CrossRefGoogle Scholar
  9. Cobb KM, Charles CD, Cheng H, Edwards RL (2003) El Nino/Southern Oscillation and tropical Pacific climate during the last millennium. Nature 424(6946):271–276. doi: 10.1038/nature01779 CrossRefGoogle Scholar
  10. Collins M et al (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3(6):391–397. doi: 10.1038/ngeo868 CrossRefGoogle Scholar
  11. Davies A, Kemp AE, Weedon GP, Barron JA (2012) El Niño-Southern Oscillation variability from the late cretaceous Marca shale of California. Geology 40(1):15–18. doi: 10.1130/G32329.1 CrossRefGoogle Scholar
  12. DiNezio PN, Kirtman BP, Clement AC, Lee SK, Vecchi GA, Wittenberg A (2012) Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J Clim 25(21):7399–7420. doi: 10.1175/JCLI-D-11-00494.1 CrossRefGoogle Scholar
  13. Dowsett HJ, Robinson MM, Haywood AM, Hill DJ, Dolan AM, Stoll DK, Riesselman CR (2012) Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nat Clim Change 2(5):365–371. doi: 10.1038/nclimate1455 CrossRefGoogle Scholar
  14. Fedorov AV, Dekens PS, McCarthy M, Ravelo AC, Barreiro M, Pacanowski RC, Philander SG (2006) The Pliocene paradox (mechanisms for a permanent El Niño). Science 312(5779):1485–1489. doi: 10.1126/science.1122666 CrossRefGoogle Scholar
  15. Fedorov AV, Brierley CM, Emanuel K (2010) Tropical cyclones and permanent El Nino in the early Pliocene epoch. Nature 463(7284):1066–1070. doi: 10.1038/nature08831 CrossRefGoogle Scholar
  16. Fedorov AV, Brierley CM, Lawrence KT, Liu Z, Dekens PS, Ravelo AC (2013) Patterns and mechanisms of early Pliocene warmth. Nature 496(7443):43–49. doi: 10.1038/nature12003 CrossRefGoogle Scholar
  17. Folland CK, Palmer TN, Parker DE (1986) Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320:602–607. doi: 10.1038/320602a0 CrossRefGoogle Scholar
  18. Galeotti S, Von der Heydt A, Huber M, Bice D, Dijkstra H, Jilbert T, Reichart G-J (2010) Evidence for active El Niño Southern Oscillation variability in the Late Miocene greenhouse climate. Geology 38(5):419–422. doi: 10.1130/G30629.1 CrossRefGoogle Scholar
  19. Graham FS, Brown JN, Langlais C, Marsland SJ, Wittenberg AT, Holbrook NJ (2014) Effectiveness of the Bjerknes stability index in representing ocean dynamics. Clim Dyn 43(9–10):2399–2414. doi: 10.1007/s00382-014-2062-3 CrossRefGoogle Scholar
  20. Haywood AM, Valdes PJ, Peck VL (2007) A permanent El Niño-like state during the Pliocene? Paleoceanography. doi: 10.1029/2006pa001323 Google Scholar
  21. Haywood AM, Dowsett HJ, Robinson MM, Stoll DK, Dolan AM, Lunt DJ, Chandler MA (2011) Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2). Geosci Model Dev 4(3):571–577. doi: 10.5194/gmd-4-571-2011 CrossRefGoogle Scholar
  22. Huang P (2015) Seasonal changes in tropical SST and the surface energy budget under global warming projected by CMIP5 models. J Clim 28(16):6503–6515. doi: 10.1175/JCLI-D-15-0055.1 CrossRefGoogle Scholar
  23. Huber M, Caballero R (2003) Eocene El Nino: evidence for robust tropical dynamics in the “hothouse”. Science 299(5608):877–881. doi: 10.1126/science.1078766 CrossRefGoogle Scholar
  24. Jin F-F, Neelin JD, Ghil M (1996) El Niño/Southern Oscillation and the annual cycle: subharmonic frequency locking and aperiodicity. Phys D 98:442–465CrossRefGoogle Scholar
  25. Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett. doi: 10.1029/2006gl027221 Google Scholar
  26. Jochum M, Fox-Kemper B, Molnar P, Shields C (2009) Differences in the Indonesian seaway in a coupled climate model and their relevance to Pliocene climate and El Ninõ. Paleoceanography. doi: 10.1029/2008PA001678 Google Scholar
  27. Karas C, Nürnberg D, Gupta AK, Tiedemann R, Mohan K, Bickert T (2009) Mid-Pliocene climate change amplified by a switch in Indonesian subsurface throughflow. Nat Geosci 2(6):434–438. doi: 10.1038/ngeo520 CrossRefGoogle Scholar
  28. Kim ST, Jin F-F (2010a) An ENSO stability analysis. Part I: results from a hybrid coupled model. Clim Dyn 36(7–8):1593–1607. doi: 10.1007/s00382-010-0796-0 Google Scholar
  29. Kim ST, Jin F-F (2010b) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn 36(7–8):1609–1627. doi: 10.1007/s00382-010-0872-5 Google Scholar
  30. Kim ST, Jin F-F (2011) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn 36(7–8):1609–1627. doi: 10.1007/s00382-010-0872-5 CrossRefGoogle Scholar
  31. Krebs U, Park W, Schneider B (2011) Pliocene aridification of Australia caused by tectonically induced weakening of the Indonesian Throughflow. Palaeogeogr Palaeoclimatol Palaeoecol 309(1):111–117. doi: 10.1016/j.palaeo.2011.06.002 CrossRefGoogle Scholar
  32. Latif M, Keenlyside NS (2009) El Nino/Southern Oscillation response to global warming. Proc Natl Acad Sci USA 106(49):20578–20583. doi: 10.1073/pnas.0710860105 CrossRefGoogle Scholar
  33. Latif M, Roeckner E, Botzet M, Esch M, Haak H, Hagemann S, Jungclaus J, Legutke S, Marsland S, Mikolajewicz U, Mitchell J (2004) Reconstructing, monitoring, and predicting multidecadal-scale changes in the North Atlantic thermohaline circulation with sea surface temperature. J Clim 17:1605–1614. doi: 10.1175/1520-0442(2004)017<1605:RMAPMC>2.0.CO;2 CrossRefGoogle Scholar
  34. Latif M, Semenov VA, Park W (2015) Super El Niños in response to global warming in a climate model. Clim Change. doi: 10.1007/s10584-015-1439-6 Google Scholar
  35. Li T, Philander SGH (1996) On the annual cycle of the eastern equatorial Pacific. J Clim 9(12):2986–2998. doi: 10.1175/1520-0442(1996)009<2986:OTACOT>2.0.CO;2 CrossRefGoogle Scholar
  36. Liu Z (1996) Modeling the equatorial annual cycle with a linear coupled model. J Clim 9:2376–2385. doi: 10.1175/1520-0442(1996)009<2376:MEACWA>2.0.CO;2 CrossRefGoogle Scholar
  37. Liu Z (2002) A simple model study of ENSO suppression by external periodic forcing. J Clim 15(9):1088–1098. doi: 10.1175/1520-0442(2002)015<1088:ASMSOE>2.0.CO;2 CrossRefGoogle Scholar
  38. Liu Z, Xie SP (1994) Equatorward propagation of coupled air–sea disturbances with application to the annual cycle of the eastern tropical Pacific. J Atmos Sci 51:3807–3822. doi: 10.1175/1520-0469(1994)051<3807:EPOCAD>2.0.CO;2 CrossRefGoogle Scholar
  39. Lübbecke JF, McPhaden MJ (2013) A comparative stability analysis of Atlantic and Pacific Niño modes. J Clim 26(16):5965–5980. doi: 10.1175/jcli-d-12-00758.1 CrossRefGoogle Scholar
  40. Lübbecke JF, McPhaden MJ (2014) Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J Clim 27:2577–2587. doi: 10.1175/JCLI-D-13-00438.1 CrossRefGoogle Scholar
  41. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation 27, Institut Pierre-Simon Laplace, p 193Google Scholar
  42. Maier-Reimer E, Mikolajewicz U, Crowley T (1990) Ocean general circulation model sensitivity experiment with an open Central American Isthmus. Paleoceanography 5(3):349–366. doi: 10.1029/PA005i003p00349 CrossRefGoogle Scholar
  43. Manucharyan GE, Fedorov AV (2014) Robust ENSO across a wide range of climates. J Clim 27(15):5836–5850. doi: 10.1175/jcli-d-13-00759.1 CrossRefGoogle Scholar
  44. McGregor S, Timmermann A, England MH, Elison Timm O, Wittenberg AT (2013) Inferred changes in El Niño-Southern Oscillation variance over the past six centuries. Clim Past Discuss 9(5):2269–2284. doi: 10.5194/cp-9-2269-2013 CrossRefGoogle Scholar
  45. Mechoso CR et al (1995) The seasonal cycle over the tropical Pacific in coupled ocean–atmosphere general circulation models. Mon Weather Rev 123:2825–2838. doi: 10.1175/1520-0493(1995)123<2825:TSCOTT>2.0.CO;2 CrossRefGoogle Scholar
  46. Pagani M, Liu Z, LaRiviere J, Ravelo AC (2009) High earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nat Geosci 3(1):27–30. doi: 10.1038/ngeo724 CrossRefGoogle Scholar
  47. Park W, Keenlyside N, Latif M, Ströh A, Redler R, Roeckner E, Madec G (2009) Tropical Pacific climate and its response to global warming in the Kiel climate model. J Clim 22(1):71–92. doi: 10.1175/2008jcli2261.1 CrossRefGoogle Scholar
  48. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Manzini E (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology, Hamburg, Germany, Report No. 349, p 127Google Scholar
  49. Scroxton N, Bonham SG, Rickaby RE, Lawrence SHF, Hermoso M, Haywood AM (2011) Persistent El Niño-Southern Oscillation variation during the Pliocene Epoch. Paleoceanography. doi: 10.1029/2010PA002097 Google Scholar
  50. Timmermann A, Jin FF, Collins M (2004) Intensification of the annual cycle in the tropical Pacific due to greenhouse warming. Geophys Res Lett. doi: 10.1029/2004GL019442 Google Scholar
  51. Timmermann A, Okumura Y, An SI, Clement A, Dong B, Guilyardi E, Yin J (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20(19):4899–4919. doi: 10.1175/jcli4283.1 CrossRefGoogle Scholar
  52. Valcke S (ed) (2006) OASIS3 user guide. PRISM Tech. Rep. 3.
  53. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20(17):4316–4340. doi: 10.1175/JCLI4258.1 CrossRefGoogle Scholar
  54. Wara MW, Ravelo AC, Delaney ML (2005) Permanent El Nino-like conditions during the Pliocene warm period. Science 309(5735):758–761. doi: 10.1126/science.1112596 CrossRefGoogle Scholar
  55. Watanabe T, Suzuki A, Minobe S, Kawashima T, Kameo K, Minoshima K, Kase T (2011) Permanent El Nino during the Pliocene warm period not supported by coral evidence. Nature 471(7337):209–211. doi: 10.1038/nature09777 CrossRefGoogle Scholar
  56. Wu L, He F, Liu Z (2005) Coupled ocean–atmosphere response to tropical North Atlantic SST variability: tropical Atlantic Dipole and ENSO. Geophys Res Lett 32:L21712. doi: 10.1029/2005GL024222 CrossRefGoogle Scholar
  57. Xie S-P (1994) On the genesis of the equatorial annual cycle. J Clim 7:2008–2013. doi: 10.1175/1520-0442(1994)007<2008:OTGOTE>2.0.CO;2 CrossRefGoogle Scholar
  58. Xie S-P (1996) Westward propagation of latitudinal asymmetry in a coupled ocean–atmosphere model. J Atmos Sci 53:3236–3250. doi: 10.1175/1520-0469(1996)053<3236:WPOLAI>2.0.CO;2 CrossRefGoogle Scholar
  59. Xie SP, Kubokawa A, Hanawa K (1989) Oscillations with two feedback processes in a coupled ocean–atmosphere model. J Clim 2(9):946–964. doi: 10.1175/1520-0442(1989)002<0946:OWTFPI>2.0.CO;2 CrossRefGoogle Scholar
  60. Zebiak SE, Cane MA (1987) A model EI Nino-Southern Oscillation. Mon Weather Rev 115:2262–2278. doi: 10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2 CrossRefGoogle Scholar
  61. Zhang R, Delworth T (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860. doi: 10.1175/JCLI3460.1 CrossRefGoogle Scholar
  62. Zhang X, Prange M, Steph S, Butzin M, Krebs U, Lunt DJ, Schulz M (2012) Changes in equatorial Pacific thermocline depth in response to Panama seaway closure: insights from a multi-model study. Earth Planet Sci Lett 317:76–84. doi: 10.1016/j.epsl.2011.11.028 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  2. 2.Excellence Cluster “The Future Ocean” at Kiel UniversityKielGermany
  3. 3.Alfred Wegener Institute Helmholtz Centre for Polar and Marine ResearchBremenGermany

Personalised recommendations