Assessing North American multimodel ensemble (NMME) seasonal forecast skill to assist in the early warning of anomalous hydrometeorological events over East Africa

  • Shraddhanand Shukla
  • Jason Roberts
  • Andrew Hoell
  • Christopher C. Funk
  • Franklin Robertson
  • Ben Kirtman
Article

Abstract

The skill of North American multimodel ensemble (NMME) seasonal forecasts in East Africa (EA), which encompasses one of the most food and water insecure areas of the world, is evaluated using deterministic, categorical, and probabilistic evaluation methods. The skill is estimated for all three primary growing seasons: March–May (MAM), July–September (JAS), and October–December (OND). It is found that the precipitation forecast skill in this region is generally limited and statistically significant over only a small part of the domain. In the case of MAM (JAS) [OND] season it exceeds the skill of climatological forecasts in parts of equatorial EA (Northern Ethiopia) [equatorial EA] for up to 2 (5) [5] months lead. Temperature forecast skill is generally much higher than precipitation forecast skill (in terms of deterministic and probabilistic skill scores) and statistically significant over a majority of the region. Over the region as a whole, temperature forecasts also exhibit greater reliability than the precipitation forecasts. The NMME ensemble forecasts are found to be more skillful and reliable than the forecast from any individual model. The results also demonstrate that for some seasons (e.g. JAS), the predictability of precipitation signals varies and is higher during certain climate events (e.g. ENSO). Finally, potential room for improvement in forecast skill is identified in some models by comparing homogeneous predictability in individual NMME models with their respective forecast skill.

Supplementary material

382_2016_3296_MOESM1_ESM.png (479 kb)
Supplementary material 1 (PNG 479 kb)
382_2016_3296_MOESM2_ESM.png (502 kb)
Supplementary material 2 (PNG 501 kb)
382_2016_3296_MOESM3_ESM.png (536 kb)
Supplementary material 3 (PNG 536 kb)
382_2016_3296_MOESM4_ESM.png (619 kb)
Supplementary material 4 (PNG 619 kb)

References

  1. Bahaga TK, Kucharski F, Tsidu GM, Yang H (2015) Assessment of prediction and predictability of short rains over equatorial East Africa using a multi-model ensemble. Theor Appl Climatol. doi:10.1007/s00704-014-1370-1 Google Scholar
  2. Barnston AG, van den Dool HM (1993) A degeneracy in cross-validated skill in regression-based forecasts. J Clim 6:963–977. doi:10.1175/1520-0442(1993)006<0963:ADICVS>2.0.CO;2 CrossRefGoogle Scholar
  3. Barnston AG, Tippett MK, van den Dool HM, Unger DA (2015) Toward an improved multi-model ENSO prediction. J Appl Meteorol Climatol. doi:10.1175/JAMC-D-14-0188.1 Google Scholar
  4. Becker E, van den Dool H, Zhang Q (2014) Predictability and forecast skill in NMME. J Clim. doi:10.1175/JCLI-D-13-00597.1 Google Scholar
  5. Chaney NW, Sheffield J, Villarini G, Wood EF (2014) Development of a high-resolution gridded daily meteorological dataset over Sub-Saharan Africa: spatial analysis of trends in climate extremes. J Clim 27:5815–5835. doi:10.1175/JCLI-D-13-00423.1 CrossRefGoogle Scholar
  6. Cheung WH, Senay GB, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int J Climatol 28:1723–1734. doi:10.1002/joc.1623 CrossRefGoogle Scholar
  7. Dutra E, Magnusson L, Wetterhall F et al (2013) The 2010–2011 drought in the Horn of Africa in ECMWF reanalysis and seasonal forecast products. Int J Climatol 33:1720–1729. doi:10.1002/joc.3545 CrossRefGoogle Scholar
  8. Feddersen H, Andersen U (2005) A method for statistical downscaling of seasonal ensemble predictions. Tellus A 57:398–408. doi:10.1111/j.1600-0870.2005.00102.x CrossRefGoogle Scholar
  9. Funk C, Senay G, Asfaw A, Verdin J, Rowland J, Michaelson J, Eilerts G, Korecha D, Choularton R (2005) Recent drought tendencies in Ethiopia and equatorial-subtropical eastern Africa. Famine Early Warning System Network, USAID, Washington, DC. Aug 2. http://pdf.usaid.gov/pdf_docs/Pnadh997.pdf. Accessed 27 July 2016
  10. Funk C, Dettinger MD, Michaelsen JC et al (2008) Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc Natl Acad Sci USA 105:11081–11086. doi:10.1073/pnas.0708196105 CrossRefGoogle Scholar
  11. Funk C, Hoell A, Shukla S et al (2014) Predicting East African spring droughts using Pacific and Indian Ocean sea surface temperature indices. Hydrol Earth Syst Sci 18:4965–4978. doi:10.5194/hess-18-4965-2014 CrossRefGoogle Scholar
  12. Funk C, Peterson P, Landsfeld M et al (2015) The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2:150066. doi:10.1038/sdata.2015.66 CrossRefGoogle Scholar
  13. Goddard L, Barnston AG, Mason SJ (2003) Evaluation of the IRI’S “Net Assessment” seasonal climate forecasts: 1997–2001. Bull Am Meteorol Soc 84:1761–1781. doi:10.1175/BAMS-84-12-1761 CrossRefGoogle Scholar
  14. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 Dataset. Int J Climatol 34:623–642. doi:10.1002/joc.3711 CrossRefGoogle Scholar
  15. Hawthorne S, Wang QJ, Schepen A, Robertson D (2013) Effective use of general circulation model outputs for forecasting monthly rainfalls to long lead times. Water Resour Res 49:5427–5436. doi:10.1002/wrcr.20453 CrossRefGoogle Scholar
  16. Hillbruner C, Moloney G (2012) When early warning is not enough—Lessons learned from the 2011 Somalia Famine. Glob Food Sec 1:20–28. doi:10.1016/j.gfs.2012.08.001 CrossRefGoogle Scholar
  17. Hoell A, Funk C (2013) Indo-Pacific sea surface temperature influences on failed consecutive rainy seasons over eastern Africa. Clim Dyn. doi:10.1007/s00382-013-1991-6 Google Scholar
  18. Infanti JM, Kirtman BP (2013) Southeastern U.S. Rainfall prediction in the North American multi-model ensemble. J Hydrometeorol 15:529–550. doi:10.1175/JHM-D-13-072.1 CrossRefGoogle Scholar
  19. Johnson C, Bowler N (2009) On the reliability and calibration of ensemble forecasts. Mon Weather Rev 137:1717–1720. doi:10.1175/2009MWR2715.1 CrossRefGoogle Scholar
  20. Kam J, Sheffield J, Yuan X, Wood EF (2014) Did a skillful prediction of sea surface temperatures help or hinder forecasting of the 2012 Midwestern US drought? Environ Res Lett 9:034005. doi:10.1088/1748-9326/9/3/034005 CrossRefGoogle Scholar
  21. Kirtman BP, Min D, Infanti JM et al (2014) The North American multi-model ensemble (NMME): phase-1 seasonal to interannual prediction, phase-2 toward developing intra-seasonal prediction. Bull Am Meteorol Soc 95:585–601. doi:10.1175/BAMS-D-12-00050.1 CrossRefGoogle Scholar
  22. Korecha D, Barnston AG (2007) Predictability of June–September rainfall in Ethiopia. Mon Weather Rev 135:628–650. doi:10.1175/MWR3304.1 CrossRefGoogle Scholar
  23. Kumar A, Peng P, Chen M (2014) Is there a relationship between potential and actual skill? Mon Weather Rev 142:2220–2227. doi:10.1175/MWR-D-13-00287.1 CrossRefGoogle Scholar
  24. Liebmann B, Hoerling MP, Funk C et al (2014) Understanding recent Eastern Horn of Africa rainfall variability and change. J Clim 27:8630–8645. doi:10.1175/JCLI-D-13-00714.1 CrossRefGoogle Scholar
  25. López-Carr D, Pricope NG, Aukema JE et al (2014) A spatial analysis of population dynamics and climate change in Africa: potential vulnerability hot spots emerge where precipitation declines and demographic pressures coincide. Popul Environ 35:323–339. doi:10.1007/s11111-014-0209-0 CrossRefGoogle Scholar
  26. Lyon B, DeWitt DG (2012) A recent and abrupt decline in the East African long rains. Geophys Res Lett. doi:10.1029/2011GL050337 Google Scholar
  27. Maxwell D, Fitzpatrick M (2012) The 2011 Somalia famine: context, causes, and complications. Glob Food Sec 1:5–12. doi:10.1016/j.gfs.2012.07.002 CrossRefGoogle Scholar
  28. Mo KC, Lettenmaier DP (2014) Hydrologic prediction over the conterminous United States using the National multi-model ensemble. J Hydrometeorol 15:1457–1472. doi:10.1175/JHM-D-13-0197.1 CrossRefGoogle Scholar
  29. Mo KC, Lyon B (2015) Global meteorological drought prediction using the North American multi-model ensemble. J Hydrometeorol. doi:10.1175/JHM-D-14-0192.1 Google Scholar
  30. Müller WA, Appenzeller C, Doblas-Reyes FJ, Liniger MA (2005) A debiased ranked probability skill score to evaluate probabilistic ensemble forecasts with small ensemble sizes. J Clim 18:1513–1523. doi:10.1175/JCLI3361.1 CrossRefGoogle Scholar
  31. Mwangi E, Wetterhall F, Dutra E et al (2014) Forecasting droughts in East Africa. Hydrol Earth Syst Sci 18:611–620. doi:10.5194/hess-18-611-2014 CrossRefGoogle Scholar
  32. Ogallo L, Oludhe C (2009) Climate information in decision-making in the Greater Horn of Africa: lessons and experiences. WMO Bull 58:185Google Scholar
  33. Pricope NG, Husak G, Lopez-Carr D et al (2013) The climate-population nexus in the East African Horn: emerging degradation trends in rangeland and pastoral livelihood zones. Glob Environ Chang 23:1525–1541. doi:10.1016/j.gloenvcha.2013.10.002 CrossRefGoogle Scholar
  34. Schepen A, Wang QJ (2014) Ensemble forecasts of monthly catchment rainfall out to long lead times by post-processing coupled general circulation model output. J Hydrol 519:2920–2931. doi:10.1016/j.jhydrol.2014.03.017 CrossRefGoogle Scholar
  35. Schneider U, Becker A, Finger P et al (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115:15–40. doi:10.1007/s00704-013-0860-x CrossRefGoogle Scholar
  36. Shukla S, Lettenmaier DP (2011) Seasonal hydrologic prediction in the United States: understanding the role of initial hydrologic conditions and seasonal climate forecast skill. Hydrol Earth Syst Sci 15:3529–3538. doi:10.5194/hess-15-3529-2011 CrossRefGoogle Scholar
  37. Shukla S, Sheffield J, Wood EF, Lettenmaier DP (2013) On the sources of global land surface hydrologic predictability. Hydrol Earth Syst Sci 17:2781–2796. doi:10.5194/hess-17-2781-2013 CrossRefGoogle Scholar
  38. Shukla S, Funk C, Hoell A (2014a) Using constructed analogs to improve the skill of National Multi-Model Ensemble March–April–May precipitation forecasts in equatorial East Africa. Environ Res Lett 9:094009. doi:10.1088/1748-9326/9/9/094009 CrossRefGoogle Scholar
  39. Shukla S, McNally A, Husak G, Funk C (2014b) A seasonal agricultural drought forecast system for food-insecure regions of East Africa. Hydrol Earth Syst Sci 18:3907–3921. doi:10.5194/hess-18-3907-2014 CrossRefGoogle Scholar
  40. Steinemann A, Iacobellis SF, Cayan DR (2015) Developing and evaluating drought indicators for decision-making. J Hydrometeorol 16:1793–1803. doi:10.1175/JHM-D-14-0234.1 CrossRefGoogle Scholar
  41. Stern DI, Gething PW, Kabaria CW et al (2011) Temperature and malaria trends in highland East Africa. PLoS ONE 6:e24524. doi:10.1371/journal.pone.0024524 CrossRefGoogle Scholar
  42. Tierney JE, Smerdon JE, Anchukaitis KJ, Seager R (2013) Multidecadal variability in East African hydroclimate controlled by the Indian Ocean. Nature 493:389–392. doi:10.1038/nature11785 CrossRefGoogle Scholar
  43. Tippett MK, Barnston AG, Robertson AW (2007) Estimation of seasonal precipitation tercile-based categorical probabilities from ensembles. J Clim 20:2210–2228. doi:10.1175/JCLI4108.1 CrossRefGoogle Scholar
  44. Wang H (2014) Evaluation of monthly precipitation forecasting skill of the National Multi-model Ensemble in the summer season. Hydrol Process 28:4472–4486. doi:10.1002/hyp.9957 CrossRefGoogle Scholar
  45. Williams AP, Funk C (2011) A westward extension of the warm pool leads to a westward extension of the Walker circulation, drying eastern Africa. Clim Dyn 37:2417–2435. doi:10.1007/s00382-010-0984-y CrossRefGoogle Scholar
  46. Weisheimer A, Palmer TN (2014) On the reliability of seasonal climate forecasts. J R Soc Interface 11:20131162. doi:10.1098/rsif.2013.1162 CrossRefGoogle Scholar
  47. Wilks DS (2006) Statistical methods in the atmospheric sciences, 2nd edn. Academic Press, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Climate Hazards Group, Department of GeographyUniversity of CaliforniaSanta BarbaraUSA
  2. 2.NASA Marshall Space Flight CenterHuntsvilleUSA
  3. 3.Physical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA
  4. 4.EROS United States Geological SurveyGarretsonUSA
  5. 5.University of MiamiMiamiUSA

Personalised recommendations