Climate Dynamics

, Volume 51, Issue 3, pp 901–913 | Cite as

Mediterranean extreme precipitation: a multi-model assessment

  • Leone Cavicchia
  • Enrico Scoccimarro
  • Silvio Gualdi
  • Paola Marson
  • Bodo Ahrens
  • Ségolène Berthou
  • Dario Conte
  • Alessandro Dell’Aquila
  • Philippe Drobinski
  • Vladimir Djurdjevic
  • Clotilde Dubois
  • Clemente Gallardo
  • Laurent Li
  • Paolo Oddo
  • Antonella Sanna
  • Csaba Torma


Exploiting the added value of the ensemble of high-resolution model simulations provided by the Med-CORDEX coordinated initiative, an updated assessment of Mediterranean extreme precipitation events as represented in different observational, reanalysis and modelling datasets is presented. A spatiotemporal characterisation of the long-term statistics of extreme precipitation is performed, using a number of different diagnostic indices. Employing a novel approach based on the timing of extreme precipitation events a number of physically consistent subregions are defined. The comparison of different diagnostics over the Mediterranean domain and physically homogeneous sub-domains is presented and discussed, focussing on the relative impact of several model configuration features (resolution, coupling, physical parameterisations) on the performance in reproducing extreme precipitation events. It is found that the agreement between the observed and modelled long-term statistics of extreme precipitation is more sensitive to the model physics, in particular convective parameterisation, than to other model configurations such as resolution and coupling.


Extreme precipitation Mediterranean climate Regional climate modelling 



The present work has been funded by the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under the GEMINA and NEXTDATA projects. This work has been partially funded by the Spanish Government and the European Regional Development Fund, through grants CGL2007-66440-C04-02, CGL2010-18013 and CGL2013-47261-R.

Supplementary material

382_2016_3245_MOESM1_ESM.pdf (3.1 mb)
Supplementary material 1 (pdf 3161 KB)


  1. Akhtar N, Brauch J, Dobler A, Béranger K, Ahrens B (2014) Medicanes in an ocean-atmosphere coupled regional climate model. Nat Hazards Earth Syst Sci 14:2189–2201CrossRefGoogle Scholar
  2. Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Klein Tank A, Haylock M, Collins D, Trewin B, Rahimzadeh F et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111:D05109Google Scholar
  3. Allan RP, Soden BJ (2008) Atmospheric warming and the amplification of precipitation extremes. Science 321(5895):1481–1484CrossRefGoogle Scholar
  4. Alpert P, Ben-Gai T, Baharad A, Benjamini Y, Yekutieli D, Colacino M, Diodato L, Ramis C, Homar V, Romero R et al (2002) The paradoxical increase of Mediterranean extreme daily rainfall in spite of decrease in total values. Geophys Res Lett 29(11):31-1–31-4CrossRefGoogle Scholar
  5. Artale V, Calmanti S, Carillo A, Dell’Aquila A, Herrmann M, Pisacane G, Ruti PM, Sannino G, Struglia MV, Giorgi F et al (2010) An atmosphere-ocean regional climate model for the Mediterranean area: assessment of a present climate simulation. Clim Dyn 35(5):721–740CrossRefGoogle Scholar
  6. Bechtold P, Köhler M, Jung T, Doblas-Reyes F, Leutbecher M, Rodwell MJ, Vitart F, Balsamo G (2008) Advances in simulating atmospheric variability with the ECMWF model: from synoptic to decadal time-scales. Q J R Meteorol Soc 134(634):1337–1351CrossRefGoogle Scholar
  7. Becker EJ, Berbery EH, Higgins RW (2009) Understanding the characteristics of daily precipitation over the United States using the North American Regional Reanalysis. J Clim 22(23):6268–6286CrossRefGoogle Scholar
  8. Belo-Pereira M, Dutra E, Viterbo P (2011) Evaluation of global precipitation data sets over the Iberian Peninsula. J Geophys Res Atmos 116:D20101CrossRefGoogle Scholar
  9. Boyle J, Klein SA (2010) Impact of horizontal resolution on climate model forecasts of tropical precipitation and diabatic heating for the TWP-ICE period. J Geophys Res Atmos 115:D23113CrossRefGoogle Scholar
  10. Brossier CL, Bastin S, Béranger K, Drobinski P (2015) Regional mesoscale air-sea coupling impacts and extreme meteorological events role on the Mediterranean Sea water budget. Clim Dyn 44(3–4):1029–1051CrossRefGoogle Scholar
  11. Cavicchia L, Gualdi S, Sanna A, Oddo P et al (2015) The regional ocean-atmosphere coupled model COSMO-NEMO_MFS. CMCC Research Paper (RP0254)Google Scholar
  12. Chan SC, Kendon EJ, Fowler HJ, Blenkinsop S, Roberts NM, Ferro CA (2014) The value of high-resolution Met Office regional climate models in the simulation of multihourly precipitation extremes. J Clim 27(16):6155–6174CrossRefGoogle Scholar
  13. Colin J, Déqué M, Radu R, Somot S (2010) Sensitivity study of heavy precipitation in Limited Area Model climate simulations: influence of the size of the domain and the use of the spectral nudging technique. Tellus A 62(5):591–604CrossRefGoogle Scholar
  14. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630CrossRefGoogle Scholar
  15. Dee D, Uppala S, Simmons A, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M, Balsamo G, Bauer P et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597CrossRefGoogle Scholar
  16. Djurdjevic V, Rajkovic B (2008) Verification of a coupled atmosphere-ocean model using satellite observations over the Adriatic Sea. Ann Geophys 26(7):1935–1954CrossRefGoogle Scholar
  17. Drobinski P, Anav A, Brossier CL, Samson G, Stéfanon M, Bastin S, Baklouti M, Béranger K, Beuvier J, Bourdallé-Badie R et al (2012) Model of the Regional Coupled Earth system (MORCE): application to process and climate studies in vulnerable regions. Environ Modell Softw 35:1–18CrossRefGoogle Scholar
  18. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubisic V, Gualdi S, Homar V, Ivancan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat M, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: a 10-year multidisciplinary program on the mediterranean water cycle. Bull Am Meteorol Soc 95(7):1063–1082CrossRefGoogle Scholar
  19. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074CrossRefGoogle Scholar
  20. Emori S, Hasegawa A, Suzuki T, Dairaku K (2005) Validation, parameterization dependence, and future projection of daily precipitation simulated with a high-resolution atmospheric GCM. Geophys Res Lett 32(6):L06708CrossRefGoogle Scholar
  21. Flaounas E, Drobinski P, Borga M, Calvet JC, Delrieu G, Morin E, Tartari G, Toffolon R (2012) Assessment of gridded observations used for climate model validation in the Mediterranean region the: HyMeX and MED-CORDEX framework. Environ Res Lett 7(2):024,017CrossRefGoogle Scholar
  22. Flaounas E, Drobinski P, Vrac M, Bastin S, Lebeaupin-Brossier C, Stéfanon M, Borga M, Calvet JC (2013) Precipitation and temperature space-time variability and extremes in the Mediterranean region: evaluation of dynamical and statistical downscaling methods. Clim Dyn 40(11–12):2687–2705CrossRefGoogle Scholar
  23. Gallardo C, Arribas A, Prego JA, Gaertner MA, De Castro M (2001) Multi-year simulations using a regional-climate model over the Iberian Peninsula: current climate and doubled CO\(_{2}\) scenario. Q J R Meteorol Soc 127(575):1659–1681Google Scholar
  24. Giorgi F, Marinucci MR (1996) A investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies. Monthly Weather Rev 124(1):148–166CrossRefGoogle Scholar
  25. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63(2):90–104CrossRefGoogle Scholar
  26. Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G et al (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29CrossRefGoogle Scholar
  27. Gordon H, Whetton P, Pittock A, Fowler A, Haylock M (1992) Simulated changes in daily rainfall intensity due to the enhanced greenhouse effect: implications for extreme rainfall events. Clim Dyn 8(2):83–102CrossRefGoogle Scholar
  28. Gualdi S, Somot S, Li L, Artale V, Adani M, Bellucci A, Braun A, Calmanti S, Carillo A, Dell’Aquila A et al (2013) The CIRCE simulations: regional climate change projections with realistic representation of the Mediterranean Sea. Bull Am Meteorol Soc 94(1):65–81CrossRefGoogle Scholar
  29. Haylock M, Hofstra N, Klein Tank A, Klok E, Jones P, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos 113:D20119CrossRefGoogle Scholar
  30. Herrera S, Gutiérrez JM, Ancell R, Pons M, Frías M, Fernández J (2012) Development and analysis of a 50-year high-resolution daily gridded precipitation dataset over Spain (Spain02). Int J Climatol 32(1):74–85CrossRefGoogle Scholar
  31. Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res Atmos 114:D21101CrossRefGoogle Scholar
  32. Hofstra N, New M, McSweeney C (2010) The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim Dyn 35(5):841–858CrossRefGoogle Scholar
  33. Iorio J, Duffy P, Govindasamy B, Thompson S, Khairoutdinov M, Randall D (2004) Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Clim Dyn 23(3–4):243–258CrossRefGoogle Scholar
  34. Jacob D, Bärring L, Christensen OB, Christensen JH, de Castro M, Deque M, Giorgi F, Hagemann S, Hirschi M, Jones R et al (2007) An inter-comparison of regional climate models for Europe: model performance in present-day climate. Clim Change 81(1):31–52CrossRefGoogle Scholar
  35. Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G et al (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578CrossRefGoogle Scholar
  36. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn. doi: 10.2151/jmsj.2015-001 Google Scholar
  37. Kopparla P, Fischer EM, Hannay C, Knutti R (2013) Improved simulation of extreme precipitation in a high-resolution atmosphere model. Geophys Res Lett 40(21):5803–5808CrossRefGoogle Scholar
  38. Lange S, Rockel B, Volkholz J, Bookhagen B (2014) Regional climate model sensitivities to parametrizations of convection and non-precipitating subgrid-scale clouds over South America. Clim Dyn 44(9):2839–2857Google Scholar
  39. Lenderink G (2010) Exploring metrics of extreme daily precipitation in a large ensemble of regional climate model simulations. Clim Res 44(2/3):151–166CrossRefGoogle Scholar
  40. L’Hévéder B, Li L, Sevault F, Somot S (2013) Interannual variability of deep convection in the Northwestern Mediterranean simulated with a coupled AORCM. Clim Dyn 41(3–4):937–960CrossRefGoogle Scholar
  41. Li F, Collins WD, Wehner MF, Williamson DL, Olson JG, Algieri C (2011) Impact of horizontal resolution on simulation of precipitation extremes in an aqua-planet version of Community Atmospheric Model (CAM3). Tellus A 63(5):884–892CrossRefGoogle Scholar
  42. Li ZX (1999) Ensemble atmospheric GCM simulation of climate interannual variability from 1979 to 1994. J Clim 12(4):986–1001CrossRefGoogle Scholar
  43. Lionello P, Abrantes F, Congedi L, Dulac F, Gacic M, Gomis D, Goodess C, Hoff H, Kutiel H, Luterbacher J, Planton S, Reale M, Schröeder K, Struglia VM, Toreti A, Tsimplis M, Ulbrich U, Xoplaki E (2012) Mediterranean climate–background information. In: Lionello P (ed) The climate of the Mediterranean region: from the past to the future. Elsevier, Amsterdam, pp 266–290Google Scholar
  44. Marcos M, Tsimplis MN (2008) Comparison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res Oceans 113:C12028CrossRefGoogle Scholar
  45. Mariotti A, Zeng N, Yoon JH, Artale V, Navarra A, Alpert P, Li LZ (2008) Mediterranean water cycle changes: transition to drier 21st century conditions in observations and CMIP3 simulations. Environ Res Lett 3(4):044,001CrossRefGoogle Scholar
  46. Meehl GA, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bull Am Meteorol Soc 81(3):427–436CrossRefGoogle Scholar
  47. Pettitt AN (1976) A two-sample Anderson-Darling rank statistic. Biometrika 63(1):161–168Google Scholar
  48. Rauscher SA, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35(4):685–711CrossRefGoogle Scholar
  49. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624–3648CrossRefGoogle Scholar
  50. Ruti P, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Aznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloché S, Brauch J, Cabos W, Calmanti S, Calvet JC, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galàn P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jordà G, L’Heveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Maciàs D, Nabat P, Onol B, Raikovic B, Ramage K, Sevault F, Sannino G, Struglia M, Sanna A, Torma C, Vervatis V (2015) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-14-00176.1 Google Scholar
  51. Scoccimarro E, Gualdi S, Bellucci A, Zampieri M, Navarra A (2014) Heavy precipitation events over the Euro-Mediterranean region in a warmer climate: results from CMIP5 models. Reg Environ Change 16(3):595–602CrossRefGoogle Scholar
  52. Sevault F, Somot S, Alias A, Dubois C, Lebeaupin-Brossier C, Nabat P, Adloff F, Déqué M, Decharme B (2014) A fully coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period. Tellus A 66:23967CrossRefGoogle Scholar
  53. Sinclair C, Spurr B, Ahmad M (1990) Modified AndersonDarling test. Commun Stat Theory Methods 19(10):3677–3686CrossRefGoogle Scholar
  54. Somot S, Sevault F, Déqué M, Crépon M (2008) 21st century climate change scenario for the Mediterranean using a coupled atmosphere-ocean regional climate model. Glob Planet Change 63(2):112–126CrossRefGoogle Scholar
  55. Tanre D, Geleyn J, Slingo J (1984) First results of the introduction of an advanced aerosol-radiation interaction in the ECMWF low resolution global model. In: Gerber H, Deepak A (eds) Aerosols and their climatic effects. A. Deepak Pub., Hampton, Virginia, USA, pp 133–177Google Scholar
  56. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos (1984–2012) 106(D7):7183–7192CrossRefGoogle Scholar
  57. Tegen I, Hollrig P, Chin M, Fung I, Jacob D, Penner J (1997) Contribution of different aerosol species to the global aerosol extinction optical thickness: estimates from model results. J Geophys Res Atmos (1984–2012) 102(D20):23,895–23,915CrossRefGoogle Scholar
  58. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Rev 117(8):1779–1800CrossRefGoogle Scholar
  59. Toreti A, Naveau P (2015) On the evaluation of climate model simulated precipitation extremes. Environ Res Lett 10(1):014,012CrossRefGoogle Scholar
  60. Toreti A, Naveau P, Zampieri M, Schindler A, Scoccimarro E, Xoplaki E, Dijkstra HA, Gualdi S, Luterbacher J (2013) Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys Res Lett 40(18):4887–4892CrossRefGoogle Scholar
  61. Trenberth KE (1999) Conceptual framework for changes of extremes of the hydrological cycle with climate change. Clim Change 42(1):327–339CrossRefGoogle Scholar
  62. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84(9):1205–1217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Leone Cavicchia
    • 1
  • Enrico Scoccimarro
    • 1
    • 3
  • Silvio Gualdi
    • 1
    • 3
  • Paola Marson
    • 1
    • 2
  • Bodo Ahrens
    • 5
  • Ségolène Berthou
    • 6
  • Dario Conte
    • 7
  • Alessandro Dell’Aquila
    • 8
  • Philippe Drobinski
    • 6
  • Vladimir Djurdjevic
    • 9
  • Clotilde Dubois
    • 10
  • Clemente Gallardo
    • 11
  • Laurent Li
    • 6
  • Paolo Oddo
    • 3
    • 4
  • Antonella Sanna
    • 1
  • Csaba Torma
    • 12
  1. 1.Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)BolognaItaly
  2. 2.Ca’ Foscari UniversityVeniceItaly
  3. 3.Istituto Nazionale di Geofisica e Vulcanologia (INGV)BolognaItaly
  4. 4.Centre for Maritime Research and Experimentation STO NATO (CMRE)La SpeziaItaly
  5. 5.Institute for Atmospheric and Environmental SciencesGoethe University Frankfurt am MainFrankfurt am MainGermany
  6. 6.IPSL/Laboratoire de Meteorologie Dynamique, Ecole Polytechnique, ENS, UPMC, ENPC, CNRSPalaiseauFrance
  7. 7.Centro Euro-Mediterraneo sui Cambiamenti Climatici (CMCC)LecceItaly
  8. 8.ENEA Climate Modeling and ImpactsRomeItaly
  9. 9.Institute of Meteorology, Faculty of PhysicsUniversity of BelgradeBelgradeSerbia
  10. 10.Météo FranceToulouseFrance
  11. 11.Departamento de Ciencias AmbientalesUniversidad de Castilla-La ManchaToledoSpain
  12. 12.Abdus Salam International Centre for Theoretical PhysicsTriesteItaly

Personalised recommendations