Climate Dynamics

, Volume 48, Issue 9–10, pp 2919–2947 | Cite as

Validation of newly designed regional earth system model (RegESM) for Mediterranean Basin

Article

Abstract

We present a validation analysis of a regional earth system model system (RegESM) for the Mediterranean Basin. The used configuration of the modeling system includes two active components: a regional climate model (RegCM4) and an ocean modeling system (ROMS). To assess the performance of the coupled modeling system in representing the climate of the basin, the results of the coupled simulation (C50E) are compared to the results obtained by a standalone atmospheric simulation (R50E) as well as several observation datasets. Although there is persistent cold bias in fall and winter, which is also seen in previous studies, the model reproduces the inter-annual variability and the seasonal cycles of sea surface temperature (SST) in a general good agreement with the available observations. The analysis of the near-surface wind distribution and the main circulation of the sea indicates that the coupled model can reproduce the main characteristics of the Mediterranean Sea surface and intermediate layer circulation as well as the seasonal variability of wind speed and direction when it is compared with the available observational datasets. The results also reveal that the simulated near-surface wind speed and direction have poor performance in the Gulf of Lion and surrounding regions that also affects the large positive SST bias in the region due to the insufficient horizontal resolution of the atmospheric component of the coupled modeling system. The simulated seasonal climatologies of the surface heat flux components are also consistent with the CORE.2 and NOCS datasets along with the overestimation in net long-wave radiation and latent heat flux (or evaporation, E), although a large observational uncertainty is found in these variables. Also, the coupled model tends to improve the latent heat flux by providing a better representation of the air–sea interaction as well as total heat flux budget over the sea. Both models are also able to reproduce the temporal evolution of the inter-annual anomaly of surface air temperature and precipitation (P) over defined sub-regions. The Mediterranean water budget (E, P and E–P) estimates also show that the coupled model has high skill in the representation of water budget of the Mediterranean Sea. To conclude, the coupled model reproduces climatological land surface fields and the sea surface variables in the range of observation uncertainty and allow studying air–sea interaction and main regional climate characteristics of the basin.

Keywords

Regional earth system model RegESM Mediterranean Basin 

Notes

Acknowledgments

This study has been supported by a research grant (113Y108) provided by The Scientific and Technological Research Council of Turkey (TUBITAK) and partly by The Abdus Salam International Center for Theoretical Physics (ICTP) Associateship Scheme. The computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (UHEM) under Grant Number 5003082013. The standalone (ITU-RegCM4) and coupled (ITU-RegESM1) simulations used in the current work can be downloaded from the Med-CORDEX database (www.medcordex.eu) maintained by ENEA (special thanks to S. Somot and E. Lombardi).

References

  1. Amante C, Eakins BW (2009) ETOPO1 1 Arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 ppGoogle Scholar
  2. Andersson A, Fennig K, Klepp C, Bakan S, Grassl H, Schulz J (2010) The Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3. Earth Syst Sci Data 2:215–234CrossRefGoogle Scholar
  3. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR, (2010) World ocean atlas 2009, volume 2: salinity. In: Levitus S (ed) NOAA Atlas NESDIS 69, U.S. Government Printing Office, Washington, DC, 184 ppGoogle Scholar
  4. Artale V, Calmanti S, Carillo A, Dell’Aquila A, Herrmann M, Pisacane G, Ruti PM, Sannino G, Struglia MV, Giorgi F, Bi X, Pal JS, Rauscher S (2010) An atmosphere ocean regional climate model for the mediterranean area: assessment of a present climate simulation. Clim Dyn 35(5):721–740. doi: 10.1007/s00382-009-0691-8 CrossRefGoogle Scholar
  5. Berry DI, Kent EC (2011) Air–sea fluxes from ICOADS: the construction of a new gridded dataset with uncertainty estimates. Int J Climatol 31:987–1001. doi: 10.1002/joc.2059 CrossRefGoogle Scholar
  6. Bozkurt D, Sen OL (2011) Precipitation in the Anatolian Peninsula: sensitivity to increased SSTs in the surrounding seas. Clim Dyn 36(3–4):711–726. doi: 10.1007/s00382-009-0651-3 CrossRefGoogle Scholar
  7. Bozkurt D, Turuncoglu UU, Sen OL, Onol B, Dalfes HN (2012) Downscaled simulations of the ECHAM5, CCSM3 and HadCM3 global models for the eastern Mediterranean–Black Sea region: evaluation of the reference period. Clim Dyn 39(1–2):207–225. doi: 10.1007/s00382-011-1187-x CrossRefGoogle Scholar
  8. Briegleb BP (1992) Delta-Eddington approximation for solar radiation in the NCAR community climate model. J Geophys Res 97:7603–7612CrossRefGoogle Scholar
  9. Collins N, Theurich G, Deluca C, Suarez M, Trayanov A, Balaji V, Li P, Yang W, Hill C, Da Silva A (2005) Design and implementation of components in the Earth System Modeling Framework. Int J High Perform Comput Appl 19(3):341–350CrossRefGoogle Scholar
  10. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  11. Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for the western United States. Clim Change 15:383–422Google Scholar
  12. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48(21):2313–2335CrossRefGoogle Scholar
  13. Emanuel KA, Zivkovic-Rothman M (1999) Development and evaluation of a convection scheme for use in climate models. J Atmos Sci 56:1766–1782CrossRefGoogle Scholar
  14. Giorgi F, Coppola E, Solmon F, Mariotti L, others (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Clim Res 52:7–29. doi: 10.3354/cr01018
  15. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63(2–3):90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  16. Giorgi F, Marinucci M, Bates G (1993) Development of a second generation regional climate model (RegCM2) I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813CrossRefGoogle Scholar
  17. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modeling revisited. J Geophys Res 104:6335–6352CrossRefGoogle Scholar
  18. Grell G, Dudhia J, Stauffer DR (1995) A description of the fifth-generation Penn State/NCAR mesoscale model (MM5). Technical note NCAR/TN-398+STR, NCAR, 117 pGoogle Scholar
  19. Haidvogel DB, Arango HG, Budgell WP, Cornuelle BD, Curchitser E, DiLorenzo E, Fennel K, Geyer WR, Hermann AJ, Lanerolle L, Levin J, McWilliams JC, Miller AJ, Moore AM, Powell TM, Shchepetkin AF, Sherwood CR, Signell RP, Warner JC, Wilkin J (2008) Ocean forecasting in terrain-following coordinates: formulation and skill assessment of the Regional Ocean Modeling System. J Comput Phys 227:3595–3624CrossRefGoogle Scholar
  20. Hagemann S, Dumenil GL (1998) A parameterization of the lateral waterflow for the global scale. Clim Dyn 14(1):17–31. doi: 10.1007/s003820050205 CrossRefGoogle Scholar
  21. Hagemann S, Dumenil GL (2001) Validation of the hydrological cycle of ECMWF and NCEP reanalyses using the MPI hydrological discharge model. J Geophys Res 106:1503–1510CrossRefGoogle Scholar
  22. Hill C, DeLuca C, Balaji V, Suarez M, Da Silva A (2004) The architecture of the Earth System Modeling Framework. Comput Sci Eng 6(1):18–28CrossRefGoogle Scholar
  23. Hill C, DeLuca C, Balaji V, Suarez M, Da Silva A, Sawyer W, Cruz C, Trayanov A, Zaslavsky L, Hallberg R, Boville BA, Craig A, Collins N, Kluzek E, Michalakes J, Neckels D, Schwab E, Smithline S, Wolfe J, Iredell M, Yang W, Jacob LR, Larson JW (2004) Implementing applications with the Earth System Modeling Framework. Lect Notes Comput Sci 3732:563–572CrossRefGoogle Scholar
  24. Holtslag A, de Bruijn E, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575CrossRefGoogle Scholar
  25. Good SA, Martin MJ, Rayner NA (2013) EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J Geophys Res Oceans 118:6704–6716. doi: 10.1002/2013JC009067 CrossRefGoogle Scholar
  26. Katragkou E, García-Díez M, Vautard R, Sobolowski S, Zanis P, Alexandri G, Cardoso RM, Colette A, Fernandez J, Gobiet A, Goergen K, Karacostas T, Knist S, Mayer S, Soares PMM, Pytharoulis I, Tegoulias I, Tsikerdekis A, Jacob D (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618. doi: 10.5194/gmd-8-603-2015 CrossRefGoogle Scholar
  27. Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch P (1996) Description of the NCAR Community Climate Model (CCM3). National Center for Atmospheric Research Tech Note NCAR/TN-420+STR, NCAR, Boulder, COGoogle Scholar
  28. Kummerow CD, Barnes W, Kozu T, Shiue J, Simpson J (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Oceanic Technol 15:809–817CrossRefGoogle Scholar
  29. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403CrossRefGoogle Scholar
  30. Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33(2–3):341–364. doi: 10.1007/s00382-008-0441-3 CrossRefGoogle Scholar
  31. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World Ocean Atlas 2009, volume 1: Temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68, U.S. Government Printing Office, Washington, DC, 184 ppGoogle Scholar
  32. Mariotti A, Struglia MV, Zeng N, Lau K-M (2002) The hydrological cycle in the Mediterranean Region and implications for the water budget of the Mediterranean Sea. J Clim 15:1674–1690CrossRefGoogle Scholar
  33. MEDAR Group (2002) Mediterranean and Black Sea database of temperature, salinity and biochemical parameters and climatological atlas [4 CD-ROMs], Ifremer Ed., Plouzane, FranceGoogle Scholar
  34. Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteorol Soc 86:89–93CrossRefGoogle Scholar
  35. Nabat P, Somot S, Mallet M, Sanchez-Lorenzo A, Wild M (2014) Contribution of anthropogenic sulfate aerosols to the changing Euro-Mediterranean climate since 1980. Geophys Res Lett 41:5605–5611CrossRefGoogle Scholar
  36. New M, Hulme M, Jones P (2000) Representing twentieth-century spacetime climate variability. Part II: development of 1901–96 monthly grids of terrestrial surface climate. J Clim 13(13):2217–2238CrossRefGoogle Scholar
  37. Onol B (2012) Effects of coastal topography on climate: high-resolution simulation with a regional climate model. Clim Res 52:159–174CrossRefGoogle Scholar
  38. Onol B, Bozkurt B, Turuncoglu UU, Sen OL, Dalfes HN (2013) Evaluation of the twenty-first century RCM simulations driven by multiple GCMs over the Eastern Mediterranean–Black Sea region. Clim Dyn 42(7–8):1949–1965. doi: 10.1007/s00382-013-1966-7 Google Scholar
  39. Pal JS, Small EE, Eltahir EAB (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within RegCM. J Geophys Res Atmos 105(D24):29579–29594CrossRefGoogle Scholar
  40. Pinardi N, Zavatarelli M, Adani M, Coppini G, Fratianni C, Oddo P, Simoncelli S, Tonani M, Lyubartsev V, Dobricic S, Bonaduce A (2015) Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: a retrospective analysis. Prog Oceanogr 132:318–332CrossRefGoogle Scholar
  41. Rasmussen R, Baker B, Kochendorfer J, Meyers T, Landolt S, Fischer AP, Black J, Thériault JM, Kucera P, Gochis D, Smith C, Nitu R, Hall M, Ikeda K, Gutmann E (2012) How well are we measuring snow: the NOAA/FAA/NCAR winter precipitation test bed. Bull Am Meteorol Soc 93:811–829CrossRefGoogle Scholar
  42. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407CrossRefGoogle Scholar
  43. Reynolds RW, Smith TM, Liu C, Chelton DB, Casey KS, Schlax MG (2007) Daily high-resolution blended analyses for sea surface temperature. J Clim 20:5473–5496CrossRefGoogle Scholar
  44. Romanou A, Tselioudis G, Zerefos CS, Clayson C-A, Curry JA, Andersson A (2010) Evaporation–precipitation variability over the Mediterranean and the Black Seas from satellite and reanalysis estimates. J Clim 23:5268–5287CrossRefGoogle Scholar
  45. Rowell DP (2003) The impact of Mediterranean SSTs on the Sahelian rainfall season. J Clim 16(5):849–862CrossRefGoogle Scholar
  46. Sanchez-Gomez E, Somot S, Josey SA, Dubois C, Elgiundi N, Déqué M (2011) Evaluation of Mediterranean Sea water and heat budgets simulated by an ensemble of high resolution regional climate models. Clim Dyn 37(9):2067–2086CrossRefGoogle Scholar
  47. Sevault F, Somot S, Alias A, Dubois C, Lebeaupin-Brossier C, Nabat P, Adloff A, Déqué M, Decharme B (2014) A fully-coupled Mediterranean regional climate system model: design and evaluation of the ocean component for the 1980–2012 period. Tellus 66:23967. doi: 10.3402/tellusa.v66.23967 CrossRefGoogle Scholar
  48. Shchepetkin AF, McWilliams JC (2005) The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9:147–404CrossRefGoogle Scholar
  49. Sikiric MD, Janekovic I, Kuzmic M (2009) A new approach to bathymetry smoothing in sigma-coordinate ocean models. Ocean Model 29(2):128–136CrossRefGoogle Scholar
  50. Skliris N, Sofianos S, Gkanasos A, Mantziafou A, Vervatis V, Axaopoulos P, Lascaratos A (2012) Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn 62:13–30CrossRefGoogle Scholar
  51. Stanev EV, Le Traon P-Y, Peneva EL (2000) Sea level variations and their dependency on meteorological and hydrological forcing: analysis of altimeter and surface data for the Black Sea. J Geophys Res 76(24):5877–5892Google Scholar
  52. Torma C, Giorgi F, Coppola E (2015) Added value of regional climate modeling over areas characterized by complex terrain—precipitation over the Alps. J Geophys Res Atmos 120:3957–3972. doi: 10.1002/2014JD022781 CrossRefGoogle Scholar
  53. Turuncoglu UU, Giuliani G, Elguindi N, Giorgi F (2013) Modelling the Caspian Sea and its catchment area using a coupled regional atmosphere–ocean model (RegCM4–ROMS): model design and preliminary results. Geosci Model Dev 6:283–299. doi: 10.5194/gmd-6-283-2013 CrossRefGoogle Scholar
  54. Turuncoglu UU (2015) Identifying the sensitivity of precipitation of Anatolian peninsula to Mediterranean and Black Sea surface temperature. Clim Dyn 44(7–8):1993–2015. doi: 10.1007/s00382-014-2346-7 CrossRefGoogle Scholar
  55. Woodruff SD, Worley SJ, Lubker SJ, Ji Z, Freeman JE, Berry DI, Brohan P, Kent EC, Reynolds RW, Smith SR, Wilkinson C (2011) ICOADS release 2.5: extensions and enhancements to the surface marine meteorological archive. Int. J. Climatol 31:951–967 (CLIMAR-III Special Issue)CrossRefGoogle Scholar
  56. Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6:373–388. doi: 10.5194/gmd-6-373-2013 CrossRefGoogle Scholar
  57. Zeng X, Zhao M, Dickinson RE (1998) Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J Clim 11:2628–2644CrossRefGoogle Scholar
  58. Zhang H-M, Bates JJ, Reynolds RW (2006) Assessment of composite global sampling: sea surface wind speed. Geophys Res Lett 33(L17714) doi: 10.1029/2006GL027086

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Informatics InstituteIstanbul Technical UniversityIstanbulTurkey
  2. 2.Earth System Physics SectionInternational Centre for Theoretical PhysicsTriesteItaly
  3. 3.Climate Modeling LaboratoryENEACasaccia, RomeItaly

Personalised recommendations