Climate Dynamics

, Volume 48, Issue 7–8, pp 2707–2727 | Cite as

Indian summer monsoon rainfall variability in response to differences in the decay phase of El Niño

  • Jasti S. Chowdary
  • H. S. Harsha
  • C. Gnanaseelan
  • G. Srinivas
  • Anant Parekh
  • Prasanth Pillai
  • C. V. Naidu


In general the Indian summer monsoon (ISM) rainfall is near normal or excess during the El Niño decay phase. Nevertheless the impact of large variations in decaying El Niño on the ISM rainfall and circulation is not systematically examined. Based on the timing of El Niño decay with respect to boreal summer season, El Niño decay phases are classified into three types in this study using 142 years of sea surface temperature (SST) data, which are as follows: (1) early-decay (ED; decay during spring), (2) mid-summer decay (MD; decay by mid-summer) and (3) no-decay (ND; no decay in summer). It is observed that ISM rainfall is above normal/excess during ED years, normal during MD years and below normal/deficit in ND years, suggesting that the differences in El Niño decay phase display profound impact on the ISM rainfall. Tropical Indian Ocean (TIO) SST warming, induced by El Niño, decays rapidly before the second half of the monsoon season (August and September) in ED years, but persists up to the end of the season in MD years, whereas TIO warming maintained up to winter in ND case. Analysis reveals the existence of strong sub-seasonal ISM rainfall variations in the summer following El Niño years. During ED years, strong negative SST anomalies develop over the equatorial central-eastern Pacific by June and are apparent throughout the summer season accompanied by anomalous moisture divergence and high sea level pressure (SLP). The associated moisture convergence and low SLP over ISM region favour excess rainfall (mainly from July onwards). This circulation and rainfall anomalies are highly influenced by warm TIO SST and Pacific La Niña conditions in ED years. Convergence of southwesterlies from Arabian Sea and northeasterlies from Bay of Bengal leads to positive rainfall over most part of the Indian subcontinent from August onwards in MD years. ND years are characterized by negative rainfall anomaly spatial pattern and weaker circulation over India throughout the summer season, which are mainly due to persisting El Niño related warm SST anomalies over the Pacific. Atmospheric general circulation model simulation supports our hypothesis that El Niño decay variations modulate ISM rainfall and circulation.


Indian summer monsoon El Niño decay phase Sea surface temperature Indian Ocean Tropospheric temperature 



We wish to acknowledge the support of Director IITM and MoES. We thank the anonymous reviewers for the comments which helped us to improve the manuscript. Grads software is used for preparing manuscript figures. We thank Yuko Okumura (University of Texas Institute for Geophysics) CESM Climate Variability working group for making available TOGA CAM atmospheric model runs.


  1. Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15(16):2205–2231. doi: 10.1175/1520-0442(2002)015<2205:tabtio>;2 CrossRefGoogle Scholar
  2. Boschat G, Terray P, Masson S (2012) Robustness of SST teleconnections and precursory patterns associated with the Indian summer monsoon. Clim Dyn 38:2143–2165. doi: 10.1007/s00382-011-1100-7 CrossRefGoogle Scholar
  3. Chakravorty S, Chowdary JS, Gnanaseelan C (2014) Epochal changes in the seasonal evolution of tropical Indian Ocean warming associated with El Niño. Clim Dyn 42:805–822. doi: 10.1007/s00382-013-1666-3 CrossRefGoogle Scholar
  4. Chakravorty S, Gnanaseelan C, Pillai PA (2016) Combined influence of remote and local SST forcing on Indian Summer Monsoon Rainfall variability. Clim Dyn. doi: 10.1007/s00382-016-2999-5 Google Scholar
  5. Chen W, Park JK, Dong B, Lu R, Jung WS (2012) The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: role of the transition of El Niño decaying phases. J Geophys Res 117:D12111. doi: 10.1029/2011JD017385 Google Scholar
  6. Chen W, Lee J-Y, Ha K-J, Yun K-S, Lu R (2016) Intensification of the Western North Pacific anticyclone response to the short decaying El Niño event due to greenhouse warming. J Clim. doi: 10.1175/JCLI-D-15-0195.1 Google Scholar
  7. Chowdary JS, Gnanaseelan C (2007) Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years. Int J Climatol 27:1421–1438CrossRefGoogle Scholar
  8. Chowdary JS, Xie SP, Luo JJ, Hafner J, Behera S, Masumoto Y, Yamagata T (2011) Predictability of Northwest Pacific climate during summer and the role of the tropical Indian Ocean. Clim Dyn 36(3–4):607–621. doi: 10.1007/s00382-009-0686-5 CrossRefGoogle Scholar
  9. Chowdary JS, Xie S-P, Tokinaga H, Okumura YM, Kubota H, Johnson NC, Zheng X-T (2012) Inter-decadal variations in ENSO teleconnection to the Indo-western Pacific for 1870–2007. J Clim 25:1722–1744CrossRefGoogle Scholar
  10. Chowdary JS, Gnanaseelan C, Chakravorty S (2013) Impact of northwest Pacific anticyclone on the Indian summer monsoon region. Theor Appl Climatol 113:329–336. doi: 10.1007/s00704-012-0785-9 CrossRefGoogle Scholar
  11. Chowdary JS, Parekh A, Gnanaseelan C, Sreenivas P (2014) Inter-decadal modulation of ENSO teleconnections to the Indian Ocean in a coupled model: special emphasis on decay phase of El Niño. Global Planet Change 112:33–40. doi: 10.1016/j.gloplacha2013.11.003 CrossRefGoogle Scholar
  12. Chowdary JS, Bandgar AB, Gnanaseelan C, Luo J-J (2015) Role of tropical Indian Ocean air–sea interactions in modulating Indian summer monsoon in a coupled model. Atmos Sci Lett 16:170–176. doi: 10.1002/asl2.561 CrossRefGoogle Scholar
  13. Collins WD et al (2006) The formulation and atmospheric simulation of the community atmosphere model version 3 (CAM3). J Clim 19:2144–2161CrossRefGoogle Scholar
  14. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Met Soc 137:1–28CrossRefGoogle Scholar
  15. Du Y, Xie SP, Huang G, Hu K (2009) Role of air–sea interaction in the long persistence of El Niño-induced north Indian Ocean warming. J Clim 22(8):2023–2038CrossRefGoogle Scholar
  16. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106(449):447–462. doi: 10.1256/smsqj.44904 CrossRefGoogle Scholar
  17. Gill EC, Rajagopalan B, Molnar P (2015) Subseasonal variations in spatial signatures of ENSO on the Indian summer monsoon from 1901 to 2009. J Geophys Res 120:8165–8185. doi: 10.1002/2015JD023184 Google Scholar
  18. Goswami BN, Xavier PK (2005) ENSO control on the south Asian monsoon through the length of the rainy season. Geophys Res Lett 32:L18717. doi: 10.1029/2005GL023216 Google Scholar
  19. Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. J Clim 16:1141–1158CrossRefGoogle Scholar
  20. Hurrell JW, Hack JJ, Shea D, Caron JM, Rosinski J (2008) A new sea surface temperature and sea ice boundary data set for the community atmosphere model. J Clim 21:5145–5153. doi: 10.1175/2008JCLI2292.1 CrossRefGoogle Scholar
  21. Keshavamurty RN (1982) Response of the atmosphere to sea surface temperature anomalies over the equatorial Pacific and the teleconnections of the southern oscillation. J Atmos Sci 39:1241–1259CrossRefGoogle Scholar
  22. Klein SA, Soden BJ, Lau N-C (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12(4):917–932CrossRefGoogle Scholar
  23. Kosaka Y, Xie SP, Lau N-C, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc Natl Acad Sci USA 110(19):7574–7579. doi: 10.1073/pnas.1215582110 CrossRefGoogle Scholar
  24. Kriplani RH, Kulkarni A (1997) Climatic impact of El-Niño/La Niña on the Indian monsoon: a new perspective. Weather 52:39–46CrossRefGoogle Scholar
  25. Kug JS, Kang IS (2006) Interactive feedback between the Indian Ocean and ENSO. J Clim 19:1784–1801CrossRefGoogle Scholar
  26. Kumar KK, Rajagopalan KB, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159CrossRefGoogle Scholar
  27. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian Monsoon failure during El Niño. Science 314:115–119. doi: 10.1126/science.1131152 CrossRefGoogle Scholar
  28. Li Y, Lu R, Dong B (2007) The ENSO–Asian monsoon interaction in a coupled ocean–atmosphere GCM. J Clim 20:5164–5177. doi: 10.1175/JCLI4289.1 CrossRefGoogle Scholar
  29. Li Qian, Ren R, Cai M, Wu GX (2012) Attribution of the summer warming since 1970s in Indian Ocean Basin to the inter-decadal change in the seasonal timing of El Niño decay phase. Geophys Res Lett 39:L12702. doi: 10.1029/2012GL052150 Google Scholar
  30. Liu C-Z, Xue F (2010a) The Decay of El Niño with different intensity. Part I, the decay of the strong El Niño. Chin J Geophys 53:14–25CrossRefGoogle Scholar
  31. Liu C-Z, Xue F (2010b) The Decay of El Niño with different intensity. Part II, the decay of the moderate and relatively-weak El Niño. Chin J Geophys 53:915–925CrossRefGoogle Scholar
  32. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Met Soc Jpn 44(1):25–43Google Scholar
  33. McGregor S, Timmermann A, Schneider N, Studecker MF, England MH (2012) The effect of the South Pacific convergence zone on the termination of El Niño events and the meridional asymmetry of ENSO. J Clim 25:5566–5586CrossRefGoogle Scholar
  34. Nigam S, Shen H-S (1993) Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: COADS observations. J Clim 6:657–676CrossRefGoogle Scholar
  35. Pant GB, Parthasarthy B (1981) Some aspects of an association between the southern oscillation and Indian summer monsoon. A Met Geophy Biokl Ser B 29:245–251CrossRefGoogle Scholar
  36. Park H-S, Chiang JCH, Lintner BR, Zhang GJ (2010) The delayed effect of major El Niño events on Indian monsoon rainfall. J Clim 23:932–946CrossRefGoogle Scholar
  37. Rajagopalan B, Molnar P (2012) Pacific Ocean sea-surface temperature variability and predictability of rainfall in the early and late parts of the Indian summer monsoon season. Clim Dyn 39(6):1543–1557CrossRefGoogle Scholar
  38. Rajeevan M, Bhate J, Kale JD, Lal B (2006) A high-resolution daily gridded rainfall for the Indian region: analysis of break and active monsoon spells. Curr Sci 91:296–306Google Scholar
  39. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  40. Schott FA, Xie SP, McCreary JP (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG100. doi: 10.1029/2007rg000245 CrossRefGoogle Scholar
  41. Shinoda T, Alexander MA, Hendon HH (2004) Remote response of the Indian Ocean to interannual SST variations in the tropical Pacific. J Clim 17:362–372CrossRefGoogle Scholar
  42. Singh P, Vasudevan V, Chowdary JS, Gnanaseelan C (2014) Subseasonal variations of Indian summer monsoon with special emphasis on drought and excess rainfall years. Int J Clim 35:570–582CrossRefGoogle Scholar
  43. Tao W, Huang G, Hu K, Gong H, Wen G, Liu L (2015) A study of biases in simulation of the Indian Ocean basin mode and its capacitor effect in CMIP3/CMIP5 models. Clim Dyn. doi: 10.1007/s00382-015-2579-0 Google Scholar
  44. Varikoden H, Singh BB, Sooraj KP, Joshi MK, Preethi B, Mujumdar M, Rajeevan M (2015) Large scale features of southwest monsoon during 2015, Chapter 1, A research report on the 2015 Southwest Monsoon edited by Mujumdar M, Gnanaseelan C and M Rajeevan, IITM research report, ISSN 0252-1075Google Scholar
  45. Wang B, Li T (2004) East Asian monsoon-ENSO interactions. In: Chang C-P (ed) East Asian monsoon. World Scientific, Singapore, pp 177–212CrossRefGoogle Scholar
  46. Wang B, Wu R, Li T (2003) Atmosphere–warm ocean interaction and its impacts on the Asian-Australian monsoon variation. J Clim 16:1195–1211CrossRefGoogle Scholar
  47. Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510CrossRefGoogle Scholar
  48. Xie SP, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of south Indian Ocean climate variability. J Clim 15(8):864–878CrossRefGoogle Scholar
  49. Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J Clim 22(3):730–747CrossRefGoogle Scholar
  50. Xie SP, Du Y, Huang G, Zheng XT, Tokinaga H, Hu KM, Liu QY (2010) Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970s. J Clim 23(12):3352–3368. doi: 10.1175/2010jcli3429.1 CrossRefGoogle Scholar
  51. Xie SP, Kosaka Y, Du Y, Hu KM, Chowdary JS, Huang G (2016) Indo-western Pacific ocean capacitor and coherent climate anomalies in post-ENSO summer: a review. Adv Atmos Sci 33(4):411–432. doi: 10.1007/s00376-015-5192-6 CrossRefGoogle Scholar
  52. Yang J, Liu Q, Xie S, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34(2):L02708. doi: 10.1029/2006gl028571 CrossRefGoogle Scholar
  53. Yun KS, Yeh SW, Ha KJ (2013) Distinct impacts of tropical SSTs on summer North Pacific high and western North Pacific subtropical high. J Geophys Res 118:4107–4116. doi: 10.1002/jgrd.50253 Google Scholar
  54. Yun KS, Ha KJ, Yeh SW, Wang B, Xiang B (2015) Critical role of boreal summer North Pacific subtropical highsin ENSO transition. Clim Dyn 44:1979–1992CrossRefGoogle Scholar
  55. Zheng XT, Xie SP, Liu QY (2011) Response of the Indian Ocean basin mode and its capacitor effect to global warming. J Clim 24(23):6146–6164. doi: 10.1175/2011jcli4169.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jasti S. Chowdary
    • 1
  • H. S. Harsha
    • 1
    • 2
  • C. Gnanaseelan
    • 1
  • G. Srinivas
    • 1
  • Anant Parekh
    • 1
  • Prasanth Pillai
    • 1
  • C. V. Naidu
    • 2
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of Meteorology and OceanographyAndhra UniversityAndhra PradeshIndia

Personalised recommendations