Climate Dynamics

, Volume 48, Issue 7–8, pp 2453–2469 | Cite as

Roles of convective heating and boundary-layer moisture asymmetry in slowing down the convectively coupled Kelvin waves

  • Lu Wang
  • Tim Li


Mechanisms for an in-phase relationship between convection and low-level zonal wind and the slow propagation of the convectively coupled Kelvin wave (CCKW) are investigated by analyzing satellite-based brightness temperature and reanalysis data and by constructing a simple theoretical model. Observational data analysis reveals an eastward shift of the low-level convergence and moisture relative to the CCKW convective center. The composite vertical structures show that the low-level convergence lies in the planetary boundary layer (PBL) (below 800 hPa), and is induced by the pressure trough above the top of PBL through an Ekman-pumping process. A traditional view of a slower eastward propagation speed compared to the dry Kelvin waves is attributed to the reduction of atmospheric static stability in mid-troposphere due to the convective heating effect. The authors’ quantitative assessment of the heating effect shows that this effect alone cannot explain the observed CCKW phase speed. We hypothesize that additional slowing process arises from the effect of zonally asymmetric PBL moisture. A simple theoretical model is constructed to understand the relative role of the heating induced effective static stability effect and the PBL moisture effect. The result demonstrates the important role of the both effects. Thus, PBL-free atmosphere interaction is important in explaining the observed structure and propagation of CCKW.


Kelvin wave Indian Ocean Planetary boundary layer Ekman pumping Theoretical model 



The authors thank valuable discussions with Dr. Guosen Chen and Dr. Lei Zhang. This study is jointly supported by China National 973 project 2015CB453200, NSFC Grant 41475084, ONR Grant N00014-16-12260, Jiangsu NSF Key project (BK20150062), Jiangsu Shuang-Chuang Team (R2014SCT001), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the International Pacific Research Center sponsored partially by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). The present results were obtained using the CLAUS archive held at the British Atmospheric Data Centre, produced using ISCCP source data distributed by the NASA Langley Data Center. This is SOEST Contribution Number 9639, IPRC Contribution Number 1197 and ESMC Number 113.


  1. Back LE, Bretherton CS (2006) Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys Res Lett 33:L17810. doi: 10.1029/2006gl026672 CrossRefGoogle Scholar
  2. Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112:693–709. doi: 10.1002/qj.49711247308 Google Scholar
  3. Chan KM, Wood R (2013) The seasonal cycle of planetary boundary layer depth determined using COSMIC radio occultation data. J Geophys Res Atmos 118:12422–12434. doi: 10.1002/2013jd020147 CrossRefGoogle Scholar
  4. Chang CP, Lim H (1988) Kelvin wave-CISK: a possible mechanism for the 30–50 day oscillations. J Atmos Sci 45:1709–1720. doi: 10.1175/1520-0469(1988)045<1709:kwcapm>;2 CrossRefGoogle Scholar
  5. Chen WY (1982) Fluctuations in Northern Hemisphere mb height field associated with the Southern Oscillation. Mon Weather Rev 110:808–823. doi: 10.1175/1520-0493(1982)110<0808:finhmh>;2 CrossRefGoogle Scholar
  6. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  7. Dunkerton TJ, Crum FX (1995) Eastward propagating ~ 2- to 15-day equatorial convection and its relation to the tropical intraseasonal oscillation. J Geophys Res Atmos (1984–2010) 100:25781–25790CrossRefGoogle Scholar
  8. Emanuel KA (1986) An air-sea interaction theory for tropical cyclones. Part I: steady-state maintenance. J Atmos Sci 43:585–605CrossRefGoogle Scholar
  9. Emanuel KA (1987) An air–sea interaction model of intraseasonal oscillations in the tropics. J Atmos Sci 44:2324–2340CrossRefGoogle Scholar
  10. Emanuel KA, David Neelin J, Bretherton CS (1994) On large-scale circulations in convecting atmospheres. Q J R Meteorol Soc 120:1111–1143CrossRefGoogle Scholar
  11. Hayashi Y (1970) A theory of large-scale equatorial waves generated by condensation heat and accelerating. J Meteorol Soc Jpn Ser II 48:140–160Google Scholar
  12. Hodges KI, Chappell DW, Robinson GJ, Yang G (2000) An improved algorithm for generating global window brightness temperatures from multiple satellite infrared imagery. J Atmos Ocean Technol 17:1296–1312. doi: 10.1175/1520-0426(2000)017<1296:aiafgg>;2 CrossRefGoogle Scholar
  13. Holton JR (1992) An introduction to dynamic meteorology, 3rd edn. Academic Press, San DiegoGoogle Scholar
  14. Hsu P-C, Li T (2012) Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden–Julian Oscillation*. J Clim 25:4914–4931. doi: 10.1175/jcli-d-11-00310.1 CrossRefGoogle Scholar
  15. Hsu P-C, Li T, Murakami H (2014) Moisture asymmetry and MJO eastward propagation in an Aquaplanet General Circulation Model*. J Clim 27:8747–8760CrossRefGoogle Scholar
  16. Kikuchi K, Takayabu YN (2004) The development of organized convection associated with the MJO during TOGA COARE IOP: trimodal characteristics. Geophys Res Lett 31:L10101. doi: 10.1029/2004gl019601 CrossRefGoogle Scholar
  17. Kiladis GN, Wheeler MC, Haertel PT, Straub KH, Roundy PE (2009) Convectively coupled equatorial waves. Rev Geophys. doi: 10.1029/2008rg000266 Google Scholar
  18. Kim J-E, Alexander MJ (2013) Tropical precipitation variability and convectively coupled equatorial waves on submonthly time scales in reanalyses and TRMM. J Clim 26:3013–3030. doi: 10.1175/jcli-d-12-00353.1 CrossRefGoogle Scholar
  19. Kuang Z (2008) A moisture-stratiform instability for convectively coupled waves. J Atmos Sci 65:834–854. doi: 10.1175/2007jas2444.1 CrossRefGoogle Scholar
  20. Kuo HL (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci 31:1232–1240. doi: 10.1175/1520-0469(1974)031<1232:FSOTPO>2.0.CO;2 CrossRefGoogle Scholar
  21. Lau K-M, Peng L (1987) Origin of low-frequency (intraseasonal) oscillations in the tropical atmosphere. Part I: basic theory. J Atmos Sci 44:950–972CrossRefGoogle Scholar
  22. Li T (2014) Recent advance in understanding the dynamics of the Madden-Julian oscillation. J Meteorol Res 28:1–33. doi: 10.1007/s13351-014-3087-6 Google Scholar
  23. Li T, Wang B (1994) The influence of sea surface temperature on the tropical intraseasonal oscillation: a numerical study. Mon Weather Rev 122:2349–2362. doi: 10.1175/1520-0493(1994)122<2349:tiosst>;2 CrossRefGoogle Scholar
  24. Lin J-L et al (2006) Tropical intraseasonal variability in 14 IPCC AR4 Climate Models. Part I: convective signals. J Clim 19:2665–2690. doi: 10.1175/jcli3735.1 CrossRefGoogle Scholar
  25. Lindzen RS (1974) Wave-CISK in the tropics. J Atmos Sci 31:156–179. doi: 10.1175/1520-0469(1974)031<0156:wcitt>;2 CrossRefGoogle Scholar
  26. Liu F, Wang B (2012a) A model for the interaction between 2-day waves and moist Kelvin Waves*. J Atmos Sci 69:611–625. doi: 10.1175/jas-d-11-0116.1 CrossRefGoogle Scholar
  27. Liu F, Wang B (2012b) A frictional skeleton model for the Madden–Julian Oscillation*. J Atmos Sci 69:2749–2758. doi: 10.1175/jas-d-12-020.1 CrossRefGoogle Scholar
  28. Liu F, Wang B (2013) Impacts of upscale heat and momentum transfer by moist Kelvin waves on the Madden–Julian oscillation: a theoretical model study. Clim Dyn 40:213–224. doi: 10.1007/s00382-011-1281-0 CrossRefGoogle Scholar
  29. Liu F, Wang B (2016) Effects of moisture feedback in a frictional coupled Kelvin-Rossby wave model and implication in the Madden–Julian oscillation dynamics. Clim Dyn. doi: 10.1007/s00382-016-3090-y Google Scholar
  30. Liu F, Chen Z, Huang G (2015) Role of delayed deep convection in the Madden-Julian oscillation. Theor Appl Climatol. doi: 10.1007/s00704-015-1587-7 Google Scholar
  31. López Carrillo C, Raymond DJ (2005) Moisture tendency equations in a tropical atmosphere. J Atmos Sci 62:1601–1613. doi: 10.1175/jas3424.1 CrossRefGoogle Scholar
  32. Majda AJ, Shefter MG (2001) Models for stratiform instability and convectively coupled waves. J Atmos Sci 58:1567–1584. doi: 10.1175/1520-0469(2001)058<1567:mfsiac>;2 CrossRefGoogle Scholar
  33. Maloney ED, Hartmann DL (1998) Frictional moisture convergence in a composite life cycle of the Madden–Julian Oscillation. J Clim 11:2387–2403. doi: 10.1175/1520-0442(1998)011<2387:fmciac>;2 CrossRefGoogle Scholar
  34. Mapes BE (2000) Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J Atmos Sci 57:1515–1535. doi: 10.1175/1520-0469(2000)057<1515:cisste>;2 CrossRefGoogle Scholar
  35. Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43Google Scholar
  36. Matthews AJ, Lander J (1999) Physical and numerical contributions to the structure of Kelvin Wave-CISK Modes in a spectral transform model. J Atmos Sci 56:4050–4058. doi: 10.1175/1520-0469(1999)056<4050:panctt>;2 CrossRefGoogle Scholar
  37. McGrath-Spangler EL, Denning AS (2013) Global seasonal variations of midday planetary boundary layer depth from CALIPSO space-borne LIDAR. J Geophys Res Atmos 118:1226–1233. doi: 10.1002/jgrd.50198 CrossRefGoogle Scholar
  38. Mekonnen A, Thorncroft CD, Aiyyer AR, Kiladis GN (2008) Convectively coupled Kelvin waves over tropical Africa during the boreal summer: structure and variability. J Clim 21:6649–6667. doi: 10.1175/2008jcli2008.1 CrossRefGoogle Scholar
  39. Mounier F, Kiladis GN, Janicot S (2007) Analysis of the Dominant mode of convectively coupled Kelvin waves in the West African monsoon. J Clim 20:1487–1503. doi: 10.1175/jcli4059.1 CrossRefGoogle Scholar
  40. Neelin JD, Held IM (1987) Modeling tropical convergence based on the moist static energy budget. Mon Weather Rev 115:3–12. doi: 10.1175/1520-0493(1987)115<0003:mtcbot>;2 CrossRefGoogle Scholar
  41. Neelin JD, Held IM, Cook KH (1987) Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J Atmos Sci 44:2341–2348. doi: 10.1175/1520-0469(1987)044<2341:ewfalf>;2 CrossRefGoogle Scholar
  42. Nguyen H, Duvel J-P (2008) Synoptic wave perturbations and convective systems over equatorial Africa. J Clim 21:6372–6388. doi: 10.1175/2008jcli2409.1 CrossRefGoogle Scholar
  43. Raymond DJ, Fuchs Ž (2007) Convectively coupled gravity and moisture modes in a simple atmospheric model. Tellus A 59:627–640. doi: 10.1111/j.1600-0870.2007.00268.x CrossRefGoogle Scholar
  44. Raymond DJ, Sessions SL, Sobel AH, Fuchs Ž (2009) The mechanics of gross moist stability. J Adv Model Earth Syst. doi: 10.3894/james.2009.1.9 Google Scholar
  45. Roundy PE (2008) Analysis of convectively coupled Kelvin waves in the Indian Ocean MJO. J Atmos Sci 65:1342–1359. doi: 10.1175/2007jas2345.1 CrossRefGoogle Scholar
  46. Roundy PE, Frank WM (2004) A climatology of waves in the equatorial region. J Atmos Sci 61:2105–2132. doi: 10.1175/1520-0469(2004)061<2105:acowit>;2 CrossRefGoogle Scholar
  47. Straub KH, Kiladis GN (2002) Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J Atmos Sci 59:30–53. doi: 10.1175/1520-0469(2002)059<0030:ooacck>;2 CrossRefGoogle Scholar
  48. Straub KH, Kiladis GN (2003a) Extratropical forcing of convectively coupled Kelvin waves during austral winter. J Atmos Sci 60:526–543. doi: 10.1175/1520-0469(2003)060<0526:efocck>;2 CrossRefGoogle Scholar
  49. Straub KH, Kiladis GN (2003b) The observed structure of convectively coupled Kelvin waves: comparison with simple models of coupled wave instability. J Atmos Sci 60:1655–1668. doi: 10.1175/1520-0469(2003)060<1655:tosocc>;2 CrossRefGoogle Scholar
  50. Straub KH, Kiladis GN, Ciesielski PE (2006) The role of equatorial waves in the onset of the South China Sea summer monsoon and the demise of El Niño during 1998. Dyn Atmos Oceans 42:216–238. doi: 10.1016/j.dynatmoce.2006.02.005 CrossRefGoogle Scholar
  51. Straub KH, Haertel PT, Kiladis GN (2010) An analysis of convectively coupled Kelvin waves in 20 WCRP CMIP3 global coupled climate models. J Clim 23:3031–3056. doi: 10.1175/2009jcli3422.1 CrossRefGoogle Scholar
  52. Ventrice MJ, Thorncroft CD, Janiga MA (2012a) Atlantic tropical cyclogenesis: a three-way interaction between an African easterly wave, diurnally varying convection, and a convectively coupled atmospheric Kelvin wave. Mon Weather Rev 140:1108–1124. doi: 10.1175/mwr-d-11-00122.1 CrossRefGoogle Scholar
  53. Ventrice MJ, Thorncroft CD, Schreck CJ (2012b) Impacts of convectively coupled Kelvin waves on environmental conditions for Atlantic tropical cyclogenesis. Mon Weather Rev 140:2198–2214. doi: 10.1175/mwr-d-11-00305.1 CrossRefGoogle Scholar
  54. von Engeln A, Teixeira J (2013) A planetary boundary layer height climatology derived from ECMWF reanalysis data. J Clim 26:6575–6590. doi: 10.1175/jcli-d-12-00385.1 CrossRefGoogle Scholar
  55. Wang B (1988) Dynamics of tropical low-frequency waves: an analysis of the moist Kelvin wave. J Atmos Sci 45:2–051Google Scholar
  56. Wang H, Fu R (2007) The influence of Amazon rainfall on the Atlantic ITCZ through convectively coupled Kelvin waves. J Clim 20:1188–1201. doi: 10.1175/jcli4061.1 CrossRefGoogle Scholar
  57. Wang B, Li T (1993) A simple tropical atmosphere model of relevance to short-term climate variations. J Atmos Sci 50:260–284. doi: 10.1175/1520-0469(1993)050<0260:astamo>;2 CrossRefGoogle Scholar
  58. Wang B, Li T (1994) Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J Atmos Sci 51:1386–1400. doi: 10.1175/1520-0469(1994)051<1386:ciwbld>;2 CrossRefGoogle Scholar
  59. Wang B, Liu F (2011) A model for scale interaction in the Madden–Julian Oscillation*. J Atmos Sci 68:2524–2536. doi: 10.1175/2011jas3660.1 CrossRefGoogle Scholar
  60. Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56:374–399. doi: 10.1175/1520-0469(1999)056<0374:ccewao>;2 CrossRefGoogle Scholar
  61. Wheeler M, Kiladis GN, Webster PJ (2000) Large-scale dynamical fields associated with convectively coupled equatorial waves. J Atmos Sci 57:613–640. doi: 10.1175/1520-0469(2000)057<0613:lsdfaw>;2 CrossRefGoogle Scholar
  62. Xie X, Wang B (1996) Low-frequency equatorial waves in vertically sheared zonal flow. Part II: unstable waves. J Atmos Sci 53:3589–3605. doi: 10.1175/1520-0469(1996)053<3589:lfewiv>;2 CrossRefGoogle Scholar
  63. Yanai M, Esbensen S, Chu J-H (1973) Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J Atmos Sci 30:611–627. doi: 10.1175/1520-0469(1973)030<0611:dobpot>;2 CrossRefGoogle Scholar
  64. Yang G-Y, Hoskins B, Slingo J (2003) Convectively coupled equatorial waves: a new methodology for identifying wave structures in observational data. J Atmos Sci 60:1637–1654. doi: 10.1175/1520-0469(2003)060<1637:ccewan>;2 CrossRefGoogle Scholar
  65. Yang G-Y, Hoskins B, Slingo J (2007a) Convectively coupled equatorial waves. Part I: horizontal and vertical structures. J Atmos Sci 64:3406–3423. doi: 10.1175/jas4017.1 CrossRefGoogle Scholar
  66. Yang G-Y, Hoskins B, Slingo J (2007b) Convectively coupled equatorial waves. Part II: propagation characteristics. J Atmos Sci 64:3424–3437. doi: 10.1175/jas4018.1 CrossRefGoogle Scholar
  67. Yano J-I, Emanuel K (1991) An improved model of the equatorial troposphere and its coupling with the stratosphere. J Atmos Sci 48:377–389. doi: 10.1175/1520-0469(1991)048<0377:aimote>;2 CrossRefGoogle Scholar
  68. Yu J-Y, Chou C, Neelin JD (1998) Estimating the gross moist stability of the tropical atmosphere*. J Atmos Sci 55:1354–1372. doi: 10.1175/1520-0469(1998)055<1354:etgmso>;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD)Nanjing University of Information Science and TechnologyNanjingChina
  2. 2.International Pacific Research Center, and School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations