Climate Dynamics

, Volume 48, Issue 7–8, pp 2437–2451 | Cite as

A bias-correction and downscaling technique for operational extended range forecasts based on self organizing map

  • A. K. SahaiEmail author
  • N. Borah
  • R. Chattopadhyay
  • S. Joseph
  • S. Abhilash


If a coarse resolution dynamical model can well capture the large-scale patterns even if it has bias in smaller scales, the spatial information in smaller domains may also be retrievable. Based on this hypothesis a method has been proposed to downscale the dynamical model forecasts of monsoon intraseasonal oscillations in the extended range, and thus reduce the forecast spatial biases in smaller spatial scales. A hybrid of clustering and analog technique, used in a self organizing map (SOM)-based algorithm, is applied to correct the bias in the model predicted rainfall. The novelty of this method is that the bias correction and downscaling could be done at any resolution in which observation/reanalysis data is available and is independent of the model resolution in which forecast is generated. A set of composite pattern of rainfall is identified by clustering the high resolution observed rainfall using SOM. These set of composite patterns for the clustered days in each cluster centers or nodes are saved and the model forecasts for any day are compared with these patterns. The closest historical pattern is identified by calculating the minimum Euclidean distance between the model rainfall forecast and the observed clustered pattern and is termed as the bias corrected SOM-based post-processed forecast. The bias-corrected and the SOM-based reconstructed forecasts are shown to improve the annual cycle and the skill of deterministic as well as probabilistic forecasts. Usage of the high resolution observational data improves the spatial pattern for smaller domain as seen from a case study for the Mahanadi basin flood during September 2011. Thus, downscaling and bias correction are both achieved by this technique.


Downscaling Self organizing map Bias-correction Monsoon prediction Extended range 



Indian Institute of Tropical Meteorology (Pune, India) is fully funded by the Ministry of Earth Sciences, Government of India, New Delhi, India.


  1. Abhilash S, Sahai AK, Borah N et al (2013) Does bias correction in the forecasted SST improve the extended range prediction skill of active-break spells of Indian summer monsoon rainfall? Atmos Sci Lett. doi: 10.1002/asl2.477 Google Scholar
  2. Abhilash S, Sahai AK, Borah N et al (2014a) Prediction and monitoring of monsoon intraseasonal oscillations over Indian monsoon region in an ensemble prediction system using CFSv2. Clim Dyn 42:2801–2815. doi: 10.1007/s00382-013-2045-9 CrossRefGoogle Scholar
  3. Abhilash S, Sahai AK, Pattnaik S et al (2014b) Extended range prediction of active-break spells of Indian summer monsoon rainfall using an ensemble prediction system in NCEP climate forecast system. Int J Climatol 34:98–113. doi: 10.1002/joc.3668 CrossRefGoogle Scholar
  4. Abhilash S, Sahai AK, Borah N et al (2015) Improved spread–error relationship and probabilistic prediction from the CFS-based grand ensemble prediction system. J Appl Meteorol Climatol 54:1569–1578. doi: 10.1175/JAMC-D-14-0200.1 CrossRefGoogle Scholar
  5. Ambroise C, Sèze G, Badran F, Thiria S (2000) Hierarchical clustering of self-organizing maps for cloud classification. Neurocomputing 30:47–52. doi: 10.1016/S0925-2312(99)00141-1 CrossRefGoogle Scholar
  6. Arnell N (2002) Hydrology and global environmental change. Prentice Hall, Upper Saddle RiverGoogle Scholar
  7. Borah N, Sahai AK, Chattopadhyay R et al (2013) A self-organizing map-based ensemble forecast system for extended range prediction of active/break cycles of Indian summer monsoon. J Geophys Res Atmos 118:9022–9034. doi: 10.1002/jgrd.50688 CrossRefGoogle Scholar
  8. Borah N, Sahai AK, Abhilash S et al (2014) An assessment of real-time extended range forecast of 2013 Indian summer monsoon. Int J Climatol. doi: 10.1002/joc.4178 Google Scholar
  9. Brier GW (1950) Verification of forecasts expressed in terms of probability. Mon Weather Rev 78:1–3. doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 CrossRefGoogle Scholar
  10. Brooks HE, Doswell CA, Maddox RA (1992) On the use of mesoscale and cloud-scale models in operational forecasting. Weather Forecast 7:120–132. doi: 10.1175/1520-0434(1992)007<0120:OTUOMA>2.0.CO;2 CrossRefGoogle Scholar
  11. Brown C, Greene A, Block P, Giannin i A (2008) Review of downscaling methodologies for Africa climate applications, IRI Technical Report 08-05: IRI Downscaling Report. International Research Institute for Climate and Society, Columbia University, pp 1–31Google Scholar
  12. Buizza R, Leutbecher M, Isaksen L (2008) Potential use of an ensemble of analyses in the ECMWF ensemble prediction system. Q J R Meteorol Soc 134:2051–2066. doi: 10.1002/qj.346 CrossRefGoogle Scholar
  13. Cavazos T (1999) Large-scale circulation anomalies conducive to extreme precipitation events and derivation of daily rainfall in Northeastern Mexico and Southeastern Texas. J Clim 12:1506–1523. doi: 10.1175/1520-0442(1999)012<1506:LSCACT>2.0.CO;2 CrossRefGoogle Scholar
  14. Chattopadhyay R, Sahai AK, Goswami BN (2008) Objective identification of nonlinear convectively coupled phases of monsoon intraseasonal oscillation: implications for prediction. J Atmos Sci 65:1549–1569. doi: 10.1175/2007JAS2474.1 CrossRefGoogle Scholar
  15. Chávez-Arroyo R, Lozano-Galianab S, Sanz-Rodrigob J, Probst O (2015) Statistical–dynamical downscaling of wind fields using self-organizing maps. Appl Thermal Eng. doi: 10.1016/j.applthermaleng.2014.03.002 Google Scholar
  16. Dakshinamurti J, Keshavmurty RN (1976) On oscillations of period around one month in the Indian summer monsoon. Indian J Meteorol Hydrol Geophys 27:201–203Google Scholar
  17. Feser F, Rockel B, von Storch H et al (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92:1181–1192. doi: 10.1175/2011BAMS3061.1 CrossRefGoogle Scholar
  18. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27:1547–1578. doi: 10.1002/joc.1556 CrossRefGoogle Scholar
  19. Fu X, Lee J-Y, Hsu P-C et al (2013) Multi-model MJO forecasting during DYNAMO/CINDY period. Clim Dyn 41:1067–1081. doi: 10.1007/s00382-013-1859-9 CrossRefGoogle Scholar
  20. Gibson PB, Perkins-Kirkpatrick SE, Renwick JA (2016) Projected changes in synoptic weather patterns over New Zealand examined through self-organizing maps. Int J Climatol. doi: 10.1002/joc.4604 Google Scholar
  21. Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40:467–490. doi: 10.1146/annurev-environ-102014-021217 CrossRefGoogle Scholar
  22. Goswami BN (2005) South Asian monsoon. In: WK-M Lau, Waliser DE (ed) Intraseasonal variability in the atmosphere-ocean climate system. Springer, Berlin, pp 19–61CrossRefGoogle Scholar
  23. Goswami BN, Ajayamohan RS, Xavier PK, Sengupta D (2003) Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys Res Lett 30:1431. doi: 10.1029/2002GL016734 Google Scholar
  24. Goswami BB, Deshpande M, Mukhopadhyay P et al (2014) Simulation of monsoon intraseasonal variability in NCEP CFSv2 and its role on systematic bias. Clim Dyn 43:2725–2745. doi: 10.1007/s00382-014-2089-5 CrossRefGoogle Scholar
  25. Goswami BB, Krishna RPM, Mukhopadhyay P et al (2015) Simulation of the indian summer monsoon in the superparameterized climate forecast system version 2: preliminary results. J Clim. doi: 10.1175/JCLI-D-14-00607.1 Google Scholar
  26. Grabowski WW (2001) Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J Atmos Sci 58:978–997. doi: 10.1175/1520-0469(2001)058<0978:CCPWTL>2.0.CO;2 CrossRefGoogle Scholar
  27. Grabowski WW, Smolarkiewicz PK (1999) CRCP: a cloud resolving convection parameterization for modeling the tropical convecting atmosphere. Phys D 133:171–178. doi: 10.1016/S0167-2789(99)00104-9 CrossRefGoogle Scholar
  28. Griffies S (2004) Fundamentals of ocean climate models. Princeton University Press, PrincetonGoogle Scholar
  29. Grotch SL, MacCracken MC (1991) The use of general circulation models to predict regional climatic change. J Clim 4:286–303. doi: 10.1175/1520-0442(1991)004<0286:TUOGCM>2.0.CO;2 CrossRefGoogle Scholar
  30. Gutiérrez JM, Cano R, Cofiño AS, Sordo C (2005) Analysis and downscaling multi-model seasonal forecasts in Peru using self-organizing maps. Tellus A 57:435–447. doi: 10.1111/j.1600-0870.2005.00128.x CrossRefGoogle Scholar
  31. Gyalistras D, Schär C, Davies HC, Wanner H (1998) Future alpine climate. In: Cebon P, Dahinden U, Davies HC, Imboden D, Jäger CC (eds) Views from the Alps. Regional perspectives on climate change. MIT Press, Cambridge, pp 171–223Google Scholar
  32. Hamill TM, Juras J (2006) Measuring forecast skill: is it real skill or is it the varying climatology? Q J R Meteorol Soc 132:2905–2923. doi: 10.1256/qj.06.25 CrossRefGoogle Scholar
  33. Haykin SS (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle RiverGoogle Scholar
  34. Hewitson BC (2008) Climate analysis, modelling, and regional downscaling using self-organizing maps, in self-organising maps: applications in geographic information science. In: Agarwal P, Skupin A (eds) Wiley, Chichester. doi: 10.1002/9780470021699.ch8
  35. Hewitson B, Crane R (1996) Climate downscaling: techniques and application. Clim Res 7:85–95. doi: 10.3354/cr007085 CrossRefGoogle Scholar
  36. Hewitson B, Crane R (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 22:13–26. doi: 10.3354/cr022013 CrossRefGoogle Scholar
  37. Hewitson B, Crane R (2006) Consensus between GCM climate change projections with empirical downscaling: precipitation downscaling over South Africa. Int J Climatol 26:1315–1337CrossRefGoogle Scholar
  38. Huffman GJ, Bolvin DT, Nelkin EJ et al (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  39. Joseph S, Sahai AK, Chattopadhyay R, Goswami BN (2011) Can El Niño-Southern Oscillation (ENSO) events modulate intraseasonal oscillations of Indian summer monsoon? J Geophys Res 116:D20123. doi: 10.1029/2010JD015510 CrossRefGoogle Scholar
  40. Karl TR, Wang W-C, Schlesinger ME et al (1990) A method of relating general circulation model simulated climate to the Observed local climate. Part I: seasonal statistics. J Clim 3:1053–1079. doi: 10.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2 CrossRefGoogle Scholar
  41. Klein WH, Glahn HR (1974) Forecasting local weather by means of model output statistics. Bull Am Meteorol Soc 55:1217–1227. doi: 10.1175/1520-0477(1974)055<1217:FLWBMO>2.0.CO;2 CrossRefGoogle Scholar
  42. Knutson TR, Weickmann KM, Kutzbach JE (1986) Global-scale intraseasonal oscillations of outgoing longwave radiation and 250 mb zonal wind during northern hemisphere summer. Mon Weather Rev 114:605–623. doi: 10.1175/1520-0493(1986)114<0605:GSIOOO>2.0.CO;2 CrossRefGoogle Scholar
  43. Kohonen T (1990) The self-organizing map. Proc IEEE 78:1464–1480. doi: 10.1109/5.58325 CrossRefGoogle Scholar
  44. Kohonen T (2000) The basic SOM. In: Self organizing maps, 3rd edn. Springer, New York, pp 166–169Google Scholar
  45. Krishnamurti TN, Bhalme HN (1976) Oscillations of a monsoon system. Part I. observational aspects. J Atmos Sci 33:1937–1954. doi: 10.1175/1520-0469(1976)033<1937:OOAMSP>2.0.CO;2 CrossRefGoogle Scholar
  46. Krishnamurti TN, Ardunay P (1980) Nothe 10–20 day westward propagating mode and breaks in the monsoons. Tellus 32:15–26Google Scholar
  47. Lamb HH (1972) British Isles weather types and a register of daily sequence of circulation patterns, 1861–1971. In: Geophysical memoir. HMSO, p 85Google Scholar
  48. Leloup JA, Lachkar Z, Boulanger J-P, Thiria S (2006) Detecting decadal changes in ENSO using neural networks. Clim Dyn 28:147–162. doi: 10.1007/s00382-006-0173-1 CrossRefGoogle Scholar
  49. Leung LR, Mearns LO, Giorgi F, Wilby RL (2003) Regional climate research. Bull Am Meteorol Soc 84:89–95. doi: 10.1175/BAMS-84-1-89 CrossRefGoogle Scholar
  50. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  51. Majda AJ (2007) Multiscale models with moisture and systematic strategies for superparameterization. J Atmos Sci 64:2726–2734. doi: 10.1175/JAS3976.1 CrossRefGoogle Scholar
  52. Mason IB (2003) Binary events. Forecast verification: a practitioner’s guide in atmospheric science, I. T. Joll. Wiley, England, pp 45–46Google Scholar
  53. Mass CF, Ovens D, Westrick K, Colle BA (2002) Does increasing horizontal resolution produce more skillful forecasts? Bull Am Meteorol Soc 83:407–430. doi: 10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2 CrossRefGoogle Scholar
  54. Maurer EP (2005) Uncertainty in projections of streamflow changes due to climate change in California. Geophys Res Lett 32:L03704. doi: 10.1029/2004GL021462 CrossRefGoogle Scholar
  55. Maurer EP (2007) Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios. Clim Change 82:309–325. doi: 10.1007/s10584-006-9180-9 CrossRefGoogle Scholar
  56. Mimikou MA, Baltas E, Varanou E, Pantazis K (2000) Regional impacts of climate change on water resources quantity and quality indicators. J Hydrol 234:95–109. doi: 10.1016/S0022-1694(00)00244-4 CrossRefGoogle Scholar
  57. Mitra AK, Bohra AK, Rajeevan MN, Krishnamurti TN (2009) Daily indian precipitation analysis formed from a merge of rain-gauge data with the TRMM TMPA satellite-derived rainfall estimates. J Meteorol Soc Jpn 87A:265–279. doi: 10.2151/jmsj.87A.265 CrossRefGoogle Scholar
  58. Morioka Y, Tozuka T, Yamagata T (2010) Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Clim Dyn 35:1059–1072. doi: 10.1007/s00382-010-0843-x CrossRefGoogle Scholar
  59. Murakami T (1976) Analysis of summer monsoon fluctuations over India. J Meteorol Soc Jpn 54:15–31Google Scholar
  60. Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Clim 12:2256–2284. doi: 10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2 CrossRefGoogle Scholar
  61. Murphy J (2000) Predictions of climate change over Europe using statistical and dynamical downscaling techniques. Int J Climatol 20:489–501. doi: 10.1002/(SICI)1097-0088(200004)20:5<489:AID-JOC484>3.0.CO;2-6 CrossRefGoogle Scholar
  62. Ning L, Mann M, Crane R, Wagener T (2012a) Probabilistic projections of climate change for the Mid-Atlantic region-validation of downscaling procedure over the historical era. J Clim 25:509–526CrossRefGoogle Scholar
  63. Ning L, Mann M, Crane R, Wagener T, Najjar R, Singh R (2012b) Probabilistic projections of anthropogenic climate change impacts on precipitation for the Mid-Atlantic region of United States. J Clim 25:5273–5291CrossRefGoogle Scholar
  64. Ohba M, Kadokura S, Nohara D, Toyoda Y (2016) Rainfall downscaling of weekly ensemble forecasts using self-organising maps. Tellus A. [Online] 68:0. ISSN 1600-0870. Accessed 12 April 2016. doi: 10.3402/tellusa.v68.29293
  65. Prein AF, Langhans W, Fosser G et al (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges. Rev Geophys 53:323–361. doi: 10.1002/2014RG000475 CrossRefGoogle Scholar
  66. Rajeevan M, Gadgil S, Bhate J (2010) Active and break spells of the Indian summer monsoon. J Earth Syst Sci 110:229–247CrossRefGoogle Scholar
  67. Reynolds CA, McLay JG, Goerss JS et al (2011) Impact of resolution and design on the US navy global ensemble performance in the tropics. Mon Weather Rev 139:2145–2155CrossRefGoogle Scholar
  68. Richardson DS (2001) Measures of skill and value of ensemble prediction systems, their interrelationship and the effect of ensemble size. Q J R Meteorol Soc 127:2473–2489. doi: 10.1002/qj.49712757715 CrossRefGoogle Scholar
  69. Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408. doi: 10.1037/h0042519 CrossRefGoogle Scholar
  70. Sabeerali CT, Ramu Dandi A, Dhakate A et al (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res Atmos 118:4401–4420. doi: 10.1002/jgrd.50403 CrossRefGoogle Scholar
  71. Saha S, Moorthi S, Wu X et al (2014) The NCEP climate forecast system version 2. J Clim 27:2185–2208. doi: 10.1175/JCLI-D-12-00823.1 CrossRefGoogle Scholar
  72. Sahai AK, Chattopadhyay R, Goswami BN (2008) A SST based large multi-model ensemble forecasting system for Indian summer monsoon rainfall. Geophys Res Lett 35:L19705. doi: 10.1029/2008GL035461 CrossRefGoogle Scholar
  73. Sahai AK, Sharmila S, Abhilash S et al (2013a) Simulation and extended range prediction of monsoon intraseasonal oscillations in NCEP CFS/GFS version 2 framework. Curr Sci 104(1394):1408Google Scholar
  74. Sahai AK, Chattopadhyay R, Joseph S et al (2013b) A new method to compute the principal components from self-organizing maps: an application to monsoon intraseasonal oscillations. Int J Climatol 34:2925–2939. doi: 10.1002/joc.3885 Google Scholar
  75. Sahai AK, Abhilash S, Chattopadhyay R et al (2014) High-resolution operational monsoon forecasts: an objective assessment. Clim Dyn. doi: 10.1007/s00382-014-2210-9 Google Scholar
  76. Sharmila S, Pillai PA, Joseph S et al (2013) Role of ocean-atmosphere interaction on northward propagation of Indian summer monsoon intra-seasonal oscillations (MISO). Clim Dyn 41:1651–1669. doi: 10.1007/s00382-013-1854-1 CrossRefGoogle Scholar
  77. Sikka DR, Gadgil S (1980) On the maximum cloud zone and the ITCZ over Indian, longitudes during the southwest monsoon. Mon Weather Rev 108:1840–1853. doi: 10.1175/1520-0493(1980)108<1840:OTMCZA>2.0.CO;2 CrossRefGoogle Scholar
  78. Siqueira PH, Steiner MTA, Scheer S (2010) Recurrent neural network with soft “winner takes all” principle for the TSP. In: Proceedings of the international conference on fuzzy computation and 2nd international conference on neural computation. SciTePress, Science and Technology Publications, pp 265–270Google Scholar
  79. Sui C-H, Lau K-M (1992) Multiscale phenomena in the tropical atmosphere over the Western Pacific. Mon Weather Rev 120:407–430. doi: 10.1175/1520-0493(1992)120<0407:MPITTA>2.0.CO;2 CrossRefGoogle Scholar
  80. Tozuka T, Luo J-J, Masson S, Yamagata T (2008) Tropical Indian Ocean variability revealed by self-organizing maps. Clim Dyn 31:333–343. doi: 10.1007/s00382-007-0356-4 CrossRefGoogle Scholar
  81. Tripathi SN, Tare V, Chinnam N et al (2006) Measurements of atmospheric parameters during Indian Space Research Organization Geosphere Biosphere Programme Land Campaign II at a typical location in the Ganga basin: 1. Physical and optical properties. J Geophys Res 111:D23209. doi: 10.1029/2006JD007278 Google Scholar
  82. Trzaska S, Schnarr E (2014) A review of downscaking methods for climate change projections. Technical report, Center for International Earth Science Information Network (CIESIN), pp 1–42Google Scholar
  83. Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 21:530–548. doi: 10.1177/030913339702100403 CrossRefGoogle Scholar
  84. Wilks DS (2005) Statistical methods in the atmospheric sciences. International geophysical series. Academic Press, LondonGoogle Scholar
  85. Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216. doi: 10.1023/B:CLIM.0000013685.99609.9e CrossRefGoogle Scholar
  86. Wu CH, Soto RD, Valko PP, Bubela AM (2000) Non-parametric regression and neural-network infill drilling recovery models for carbonate reservoirs. Comput Geosci 26:975–987CrossRefGoogle Scholar
  87. Xing Y, Majda AJ, Grabowski WW (2009) New efficient sparse space-time algorithms for superparameterization on mesoscales. Mon Weather Rev 137:4307–4324. doi: 10.1175/2009MWR2858.1 CrossRefGoogle Scholar
  88. Yasunari T (1980) A quasi-stationary appearance of the 30–40 day period in the cloudiness fluctuations during the summer monsoon over India. J Meteorol Soci Jpn 58:225–229Google Scholar
  89. Yin C, Li Y, Ye W et al (2010) Statistical downscaling of regional daily precipitation over southeast Australia based on self-organizing maps. Theor Appl Climatol 105:11–26. doi: 10.1007/s00704-010-0371-y CrossRefGoogle Scholar
  90. Zhou Y, Lau WKM, Liu C (2013) Rain characteristics and large-scale environments of precipitation objects with extreme rain volumes from TRMM observations. J Geophys Res Atmos 118:9673–9689. doi: 10.1002/jgrd.50776 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. K. Sahai
    • 1
    Email author
  • N. Borah
    • 1
  • R. Chattopadhyay
    • 1
  • S. Joseph
    • 1
  • S. Abhilash
    • 1
    • 2
  1. 1.Indian Institute of Tropical MeteorologyPuneIndia
  2. 2.Department of Atmospheric SciencesCochin University of Science and TechnologyCochinIndia

Personalised recommendations