Climate Dynamics

, Volume 48, Issue 7–8, pp 2419–2435 | Cite as

Evaluation of WRF model simulations of tropical cyclones in the western North Pacific over the CORDEX East Asia domain

  • Wenqiang Shen
  • Jianping TangEmail author
  • Yuan Wang
  • Shuyu Wang
  • Xiaorui Niu


In this study, the characteristics of tropical cyclones (TCs) over the East Asia Coordinated Regional Downscaling Experiment domain are examined with the Weather Research and Forecasting (WRF) model. Eight 20-year (1989–2008) simulations are performed using the WRF model, with lateral boundary forcing from the ERA-Interim reanalysis, to test the sensitivity of TC simulation to interior spectral nudging (SN, including nudging time interval, nudging variables) and radiation schemes [Community Atmosphere Model (CAM), Rapid Radiative Transfer Model (RRTM)]. The simulated TCs are compared with the observation from the Regional Specialized Meteorological Centers TC best tracks. It is found that all WRF runs can simulate the climatology of key TC features such as the tracks and location/frequency of genesis reasonably well, and reproduce the inter-annual variations and seasonal cycle of TC counts. The SN runs produce enhanced TC activity compare to the runs without SN. The thermodynamic profile suggests that nudging with horizontal wind increases the unstable of thermodynamic states in tropics, which results in excessive TCs genesis. The experiments with wind and temperature nudging improve the overestimation of TCs numbers, especially suppress the TCs intensification by correct the thermodynamic profile. Weak SN coefficient enhances TCs activity significantly even with wind and temperature nudging. The analysis of TCs numbers and large scale circulation shows that the SN parameters adopted in our experiments do not appear to suppress the formation of TC. The excessive TCs activity in CAM runs relative to RRTM runs are also due to the enhanced atmospheric instability.


Tropical cyclone Spectral nudging Radiation scheme Weather Research and Forecasting (WRF) model CORDEX East Asia 



We acknowledge the NOAA/National Climatic Data Center and the European Centre for Medium-Range Weather Forecasts for providing IBTrACS data and ERA-interim reanalysis data, respectively. We wish to express our sincere thanks to the anonymous reviewers for their helpful comments on an earlier manuscript. We would like to thank Lei Lili at Nanjing University for helping us improve the grammar and language usage. The research is supported by the National Natural Science Foundation of China (41375075, 91425304 and 41575099) and the Jiangsu Collaborative Innovation Center for Climate Change.


  1. Barcikowska M (2013) Variability and trends of tropical cyclones over the western North Pacific for the last decades. Dissertation, University of HamburgGoogle Scholar
  2. Bender MA, Knutson TR, Tuleya RE, Sirutis JJ, Vecchi GA, Garner ST, Held IM (2010) Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327:454–458. doi: 10.1126/science.1180568 CrossRefGoogle Scholar
  3. Bukovsky MS, Karoly DJ (2009) Precipitation simulations Using WRF as a nested regional climate model. J Appl Meteorol Clim 48:2152–2159. doi: 10.1175/2009JAMC2186.1 CrossRefGoogle Scholar
  4. Caron LP, Jones CG, Vaillancourt PA, Winger K (2013) On the relationship between cloud–radiation interaction, atmospheric stability and Atlantic tropical cyclones in a variable-resolution climate model. Clim Dyn 40:1257–1269. doi: 10.1007/s00382-012-1311-6 CrossRefGoogle Scholar
  5. Cha D-H, Jin C-S, Lee D-K, Kuo Y-H (2011) Impact of intermittent spectral nudging on regional climate simulation using Weather Research and Forecasting model. J Geophys Res. doi: 10.1029/2010jd015069 Google Scholar
  6. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon Weather Rev 129:569–585. doi: 10.1175/1520-0493(2001)129<0569:Caalsh>2.0.Co;2 CrossRefGoogle Scholar
  7. Collins WD et al (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0). Technical note TN-464 + STR, National Center for Atmospheric Research, BoulderGoogle Scholar
  8. Davies HC (1976) A laterul boundary formulation for multi-level prediction models. Q J Royal Meteorol Soc 102:405–418 doi: 10.1256/smsqj.43209 Google Scholar
  9. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  10. Diro GT, Giorgi F, Fuentes-Franco R, Walsh KJE, Giuliani G, Coppola E (2014) Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Clim Change 125:79–94. doi: 10.1007/s10584-014-1155-7 CrossRefGoogle Scholar
  11. Emanuel K (2003) Tropical cyclones. Annu Rev Earth Planet Sci 31:75–104. doi: 10.1146/ CrossRefGoogle Scholar
  12. Emanuel K (2005) Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436:686–688. doi: 10.1038/nature03906 CrossRefGoogle Scholar
  13. Feser F, Barcikowska M (2012) The influence of spectral nudging on typhoon formation in regional climate models. Environ Res Lett 7:014024. doi: 10.1088/1748-9326/7/1/014024 CrossRefGoogle Scholar
  14. Feser F, Rockel B, von Storch H, Winterfeldt J, Zahn M (2011) Regional climate models add value to global model data: a review and selected examples. Bull Am Meteorol Soc 92:1181–1192. doi: 10.1175/2011bams3061.1 CrossRefGoogle Scholar
  15. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ Bull 58:175Google Scholar
  16. Gray WM (1968) Global view of origin of tropical disturbances and storms. Mon Weather Rev 96:669. doi: 10.1175/1520-0493(1968)096<0669:Gvotoo>2.0.Co;2 CrossRefGoogle Scholar
  17. Hong SY, Chang EC (2012) Spectral nudging sensitivity experiments in a regional climate model Asia-Pacific. J Atmos Sci 48:345–355. doi: 10.1007/s13143-012-0033-3 Google Scholar
  18. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120. doi: 10.1175/1520-0493(2004)132<0103:Aratim>2.0.Co;2 CrossRefGoogle Scholar
  19. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi: 10.1175/Mwr3199.1 CrossRefGoogle Scholar
  20. Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res Atmos. doi: 10.1029/2008jd009944 Google Scholar
  21. Jin H, Peng MS, Jin Y, Doyle JD (2014) An evaluation of the impact of horizontal resolution on tropical cyclone predictions using COAMPS-TC. Weather Forecast 29:252–270. doi: 10.1175/Waf-D-13-00054.1 CrossRefGoogle Scholar
  22. Jin C-S, Cha D-H, Lee D-K, Suh M-S, Hong S-Y, Kang H-S, Ho C-H (2015) Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Clim Dyn. doi: 10.1007/s00382-015-2869-6 Google Scholar
  23. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181. doi: 10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2 CrossRefGoogle Scholar
  24. Kim D, Jin C-S, Ho C-H, Kim J, Kim J-H (2014) Climatological features of WRF-simulated tropical cyclones over the western North Pacific. Clim Dyn 44:3223–3235. doi: 10.1007/s00382-014-2410-3 CrossRefGoogle Scholar
  25. Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The International Best Track Archive for Climate Stewardship (IBTrACS): unifying tropical cyclone data. Bull Am Meteorol Soc 91:363. doi: 10.1175/2009bams2755.1 CrossRefGoogle Scholar
  26. Knutson TR, Sirutis JJ, Garner ST, Held IM, Tuleya RE (2007) Simulation of the recent multidecadal increase of atlantic hurricane activity using an 18-km-grid regional model. Bull Am Meteorol Soc 88:1549–1565. doi: 10.1175/bams-88-10-1549 CrossRefGoogle Scholar
  27. Knutson TR et al (2010) Tropical cyclones and climate change. Nat Geosci 3:157–163. doi: 10.1038/Ngeo779 CrossRefGoogle Scholar
  28. Leung LR, Qian Y (2009) Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model. Geophys Res Lett. doi: 10.1029/2008gl036445 Google Scholar
  29. Liu P, Tsimpidi AP, Hu Y, Stone B, Russell AG, Nenes A (2012) Differences between downscaling with spectral and grid nudging using WRF Atmos. Chem Phys 12:3601–3610. doi: 10.5194/acp-12-3601-2012 Google Scholar
  30. Ma ZH, Fei JF, Huang XG, Cheng XP (2012) Sensitivity of tropical cyclone intensity and structure to vertical resolution in WRF Asia-Pacific. J Atmos Sci 48:67–81. doi: 10.1007/s13143-012-0007-5 Google Scholar
  31. Manganello JV et al (2012) Tropical cyclone climatology in a 10-km global atmospheric GCM: toward weather-resolving climate modeling. J Clim 25:3867–3893. doi: 10.1175/Jcli-D-11-00346.1 CrossRefGoogle Scholar
  32. Manganello JV et al (2014) Future changes in the western North Pacific tropical cyclone activity projected by a multidecadal simulation with a 16-km global atmospheric GCM. J Clim 27:7622–7646. doi: 10.1175/jcli-d-13-00678.1 CrossRefGoogle Scholar
  33. Maue RN (2011) Recent historically low global tropical cyclone activity. Geophys Res Lett. doi: 10.1029/2011gl047711 Google Scholar
  34. Nguyen KC, Walsh KJE (2001) Interannual, decadal, and transient greenhouse simulation of tropical cyclone-like vortices in a regional climate model of the South Pacific. J Clim 14:3043–3054. doi: 10.1175/1520-0442(2001)014<3043:Idatgs>2.0.Co;2 CrossRefGoogle Scholar
  35. Nguyen LT, Molinari J, Thomas D (2014) Evaluation of tropical cyclone center identification methods in numerical models. Mon Weather Rev 142:4326–4339. doi: 10.1175/Mwr-D-14-00044.1 CrossRefGoogle Scholar
  36. Otte TL, Nolte CG, Otte MJ, Bowden JH (2012) Does nudging squelch the extremes in regional climate modeling? J Clim 25:7046–7066. doi: 10.1175/Jcli-D-12-00048.1 CrossRefGoogle Scholar
  37. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang WQ (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625. doi: 10.1175/1520-0442(2002)015<1609:Aiisas>2.0.Co;2 CrossRefGoogle Scholar
  38. Skamarock WC et al (2008) A description of the advanced research WRF version 3. NCAR technical note NCAR/TN-475+STR. doi: 10.5065/D68S4MVH
  39. Song S, Tang J, Chen X (2011) Impacts of spectral nudging on the sensitivity of a regional climate model to convective parameterizations in East Asia. Acta Meteorol Sin 25:63–77. doi: 10.1007/s13351-011-0005-z CrossRefGoogle Scholar
  40. Stowasser M, Wang Y, Hamilton K (2007) Tropical cyclone changes in the western North Pacific in a global warming scenario. J Clim 20:2378–2396. doi: 10.1175/jcli4126.1 CrossRefGoogle Scholar
  41. Suzuki-Parker A (2012) Uncertainties and limitations in simulating tropical cyclones. Springer, BerlinCrossRefGoogle Scholar
  42. von Storch H, Langenberg H, Feser F (2000) A spectral nudging technique for dynamical downscaling purposes. Mon Weather Rev 128:3664–3673. doi: 10.1175/1520-0493(2000)128<3664:Asntfd>2.0.Co;2 CrossRefGoogle Scholar
  43. Walsh K, Lavender S, Murakami H, Scoccimarro E, Caron L-P, Ghantous M (2010) The tropical cyclone climate model intercomparison project. In: Elsner JB et al (eds) Hurricanes and climate change. Springer, Berlin, pp 1–24Google Scholar
  44. Walsh KJE et al (2016) Tropical cyclones and climate change Wires. Clim Change 7:65–89. doi: 10.1002/wcc.371 Google Scholar
  45. Wang GH, Su JL, Ding YH, Chen D (2007) Tropical cyclone genesis over the south China sea. J Mar Syst 68:318–326. doi: 10.1016/j.jmarsys.2006.12.002 CrossRefGoogle Scholar
  46. Wang H, Wang YQ, Xu HM (2013) Improving simulation of a tropical cyclone using dynamical initialization and large-scale spectral nudging: a case study of Typhoon Megi (2010). Acta Meteorol Sin 27:455–475. doi: 10.1007/s13351-013-0418-y CrossRefGoogle Scholar
  47. Wu C-C, Zhan R, Lu Y, Wang Y (2012) Internal variability of the dynamically downscaled tropical cyclone activity over the western North Pacific by the IPRC regional atmospheric model. J Clim 25:2104–2122. doi: 10.1175/jcli-d-11-00143.1 CrossRefGoogle Scholar
  48. Wu L et al (2014) Simulations of the present and late-twenty-first-century western North Pacific Tropical cyclone activity using a regional model. J Clim 27:3405–3424. doi: 10.1175/jcli-d-12-00830.1 CrossRefGoogle Scholar
  49. Zhao M, Held IM, Lin SJ, Vecchi GA (2009) Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM. J Clim 22:6653–6678. doi: 10.1175/2009JCLI3049.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wenqiang Shen
    • 1
    • 2
  • Jianping Tang
    • 1
    • 2
    • 3
    Email author
  • Yuan Wang
    • 1
    • 2
  • Shuyu Wang
    • 1
    • 3
  • Xiaorui Niu
    • 1
    • 3
  1. 1.School of Atmospheric SciencesNanjing UniversityNanjingChina
  2. 2.Key Laboratory of Mesoscale Severe Weather/Ministry of EducationNanjing UniversityNanjingChina
  3. 3.Institute for Climate and Global Change ResearchNanjing UniversityNanjingChina

Personalised recommendations