Climate Dynamics

, Volume 48, Issue 7–8, pp 2405–2418 | Cite as

Tropospheric circulation during the early twentieth century Arctic warming

  • Martin Wegmann
  • Stefan Brönnimann
  • Gilbert P. Compo
Article

Abstract

The early twentieth century Arctic warming (ETCAW) between 1920 and 1940 is an exceptional feature of climate variability in the last century. Its warming rate was only recently matched by recent warming in the region. Unlike recent warming largely attributable to anthropogenic radiative forcing, atmospheric warming during the ETCAW was strongest in the mid-troposphere and is believed to be triggered by an exceptional case of natural climate variability. Nevertheless, ultimate mechanisms and causes for the ETCAW are still under discussion. Here we use state of the art multi-member global circulation models, reanalysis and reconstruction datasets to investigate the internal atmospheric dynamics of the ETCAW. We investigate the role of boreal winter mid-tropospheric heat transport and circulation in providing the energy for the large scale warming. Analyzing sensible heat flux components and regional differences, climate models are not able to reproduce the heat flux evolution found in reanalysis and reconstruction datasets. These datasets show an increase of stationary eddy heat flux and a decrease of transient eddy heat flux during the ETCAW. Moreover, tropospheric circulation analysis reveals the important role of both the Atlantic and the Pacific sectors in the convergence of southerly air masses into the Arctic during the warming event. Subsequently, it is suggested that the internal dynamics of the atmosphere played a major role in the formation in the ETCAW.

Keywords

Arctic climate Arctic warming Circulation Reanalysis Reconstructions Troposphere Climate change Heat flux 

Supplementary material

382_2016_3212_MOESM1_ESM.docx (3.3 mb)
Supplementary material 1 (DOCX 3331 kb)

References

  1. Pages 2K Consortium (2013) Continental-scale temperature variability during the past two millennia. Nat Geosci 6:339–346Google Scholar
  2. Beitsch A, Jungclaus JH, Zanchettin D (2014) Patterns of decadal-scale Arctic warming events in simulated climate. Clim Dyn 43:1773–1789CrossRefGoogle Scholar
  3. Bekryaev RV, Polyakov IV, Alexeev VA (2010) Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J Clim 23:3888–3906CrossRefGoogle Scholar
  4. Belleflamme A, Fettweis X, Erpicum M (2015) Recent summer Arctic atmospheric circulation anomalies in a historical perspective. Cryosphere 9:53–64CrossRefGoogle Scholar
  5. Bengtsson L, Semenov VA, Johannessen OM (2004) The early twentieth-century warming in the Arctic—a possible mechanism. J Clim 17:4045–4057CrossRefGoogle Scholar
  6. Bhend J, Franke J, Folini D, Wild M, Brönnimann S (2012) An ensemble-based approach to climate reconstructions. Clim Past 8:963–976CrossRefGoogle Scholar
  7. Bindoff NL, Stott PA, AchutaRao M, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S et al. (2013) Detection and attribution of climate change: from global to regional. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  8. Birkeland B (1930) Temperaturvariationen auf Spitzbergen. Meteorol Z 47:2Google Scholar
  9. Brohan P, Kennedy JJ, Harris I, Tett SFB, Jones PD (2006) Uncertainty estimates in regional and global observed temperature changes: a new data set from 1850. J Geophys Res Atmos 111:D12106CrossRefGoogle Scholar
  10. Brönnimann S (2009) Early twentieth-century warming. Nat Geosci 2:735–736CrossRefGoogle Scholar
  11. Brönnimann S, Luterbacher J, Staehelin J, Svendby TM, Hansen G, Svenøe T (2004) Extreme climate of the global troposphere and stratosphere in 1940–42 related to El Niño. Nature 431:971–974CrossRefGoogle Scholar
  12. Brönnimann S, Grant AN, Compo GP, Ewen T, Griesser T, Fischer AM, Schraner M, Stickler A (2012) A multi-data set comparison of the vertical structure of temperature variability and change over the Arctic during the past 100 years. Clim Dyn 39:1577–1598CrossRefGoogle Scholar
  13. Compo GP, Sardeshmukh PD (2009) Oceanic influences on recent continental warming. Clim Dyn 32:333–342. doi:10.1007/s00382-008-0448-9 CrossRefGoogle Scholar
  14. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P (2011) The Twentieth Century Reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776 CrossRefGoogle Scholar
  15. Cram TA, Compo GP, Yin X, Allan RJ, McColl C, Vose RS, Whitaker JS, Matsui N, Ashcroft L, Auchmann R et al (2015) The international surface pressure databank version 2. Geosci Data J 2:31–46CrossRefGoogle Scholar
  16. Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the little ice age. PAGES News 16:22–23Google Scholar
  17. Delworth TL, Knutson TR (2000) Simulation of early 20th century global warming. Science 287:2246–2250CrossRefGoogle Scholar
  18. Fyfe JC, von Salzen K, Gillett NP, Arora VK, Flato GM, McConnell JR (2013) One hundred years of Arctic surface temperature variation due to anthropogenic influence. Nat Sci Rep 3:2645Google Scholar
  19. Giese BS, Compo GP, Slowey NC, Sardeshmukh PD, Carton JA, Ray S, Whitaker JS (2010) The 1918/1919 El Niño. Bull Am Meteorol Soc 91:177–183. doi:10.1175/2009BAMS2903.1 CrossRefGoogle Scholar
  20. Giese BS, Seidel HF, Compo GP, Sardeshmukh PD (2016) An ensemble of historical ocean reanalyses with sparse observational input. J Geophys Res Oceans (submitted)Google Scholar
  21. Grant A, Brönnimann S, Haimberger L (2008) Recent arctic warming vertical structure contested. Nature 455:E2–E3CrossRefGoogle Scholar
  22. Grant AN, Brönnimann S, Ewen T, Griesser T, Stickler A (2009) The early twentieth century warm period in the European Arctic. Meteorol Z 18:425–432CrossRefGoogle Scholar
  23. Griesser T, Brönnimann S, Grant A, Ewen T, Stickler A, Comeaux J (2010) Reconstruction of global monthly upper-level temperature and geopotential height fields back to 1880. J Clim 23:5590–5609CrossRefGoogle Scholar
  24. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004CrossRefGoogle Scholar
  25. Hanssen-Bauer I, Førland EJ (1998) Long-term trends in precipitation and temperature in the Norwegian Arctic: can they be explained by changes in atmospheric circulation patterns? Clim Res 10:143–153CrossRefGoogle Scholar
  26. Hersbach H, Peubey C, Simmons A, Berrisford P, Poli P, Dee D (2015) ERA-20CM: a twentieth-century atmospheric model ensemble. Q J R Meteorol Soc 141:2350–2375CrossRefGoogle Scholar
  27. Hirahara S, Ishii M, Fukuda Y (2014) Centennial-scale sea surface temperature analysis and its uncertainty. J Clim 27:57–75CrossRefGoogle Scholar
  28. IPCC (2013) Climate Change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 1535Google Scholar
  29. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi AP, Zakharov VF, Bobylev LP, Pettersson LH (2004) Arctic climate change: observed and modelled temperature and seaice variability. Tellus A 56:328–341CrossRefGoogle Scholar
  30. Jungclaus JH, Lorenz SJ, Timmreck C, Reick CH, Brovkin V, Six K, Segschneider J, Giorgetta MA, Crowley TJ, Pongratz J (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737CrossRefGoogle Scholar
  31. Kaufman DS, Schneider DP, McKay NP, Ammann CM, Bradley RS, Briffa KR, Miller GH, Otto-Bliesner BL, Overpeck JT, Vinther BM (2009) Recent warming reverses long-term Arctic cooling. Science 325:1236–1239CrossRefGoogle Scholar
  32. Koch D, Jacob D, Tegen I, Rind D, Chin M (1999) Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model. J Geophys Res Atmos 104:23799–23822CrossRefGoogle Scholar
  33. Lean J (2000) Evolution of the Sun’s spectral irradiance since the Maunder Minimum. Geophys Res Lett 27:2425–2428CrossRefGoogle Scholar
  34. Mann ME, Woodruff JD, Donnelly JP, Zhang Z (2009) Atlantic hurricanes and climate over the past 1,500 years. Nature 460:880–883CrossRefGoogle Scholar
  35. Opel T, Fritzsche D, Meyer H (2013) Eurasian Arctic climate over the past millennium as recorded in the Akademii Nauk ice core (Severnaya Zemlya). Clim Past 9:2379–2389CrossRefGoogle Scholar
  36. Overland JE, Turet P (1994) Variability of the atmospheric energy flux across 70 N computed from the GFDL data set. In: Johannessen OM, Muench RD, Overland JE (eds) The polar Oceans and their role in shaping the global environment. American Geophysical Union, Washington, pp 313–325Google Scholar
  37. Overland JE, Francis JA, Hanna E, Wang M (2012) The recent shift in early summer Arctic atmospheric circulation. Geophys Res Lett 39:L19804CrossRefGoogle Scholar
  38. Overpeck J, Hughen K, Hardy D, Bradley R, Case R, Douglas M, Finney B, Gajewski K, Jacoby G, Jennings A (1997) Arctic environmental change of the last four centuries. Science 278:1251–1256CrossRefGoogle Scholar
  39. Poli P, Hersbach H, Dee DP, Berrisford P, Simmons AJ, Vitart F, Laloyaux P, Tan DGH, Peubey C, Thépaut J-N, Trémolet Y, Hólm EV, Bonavita M, Isaksen L, Fisher M (2016) ERA-20C: an atmospheric reanalysis of the 20th century. J Clim. doi:10.1175/JCLI-D-15-0556.1 Google Scholar
  40. Polyakov IV, Bekryaev RV, Alekseev GV, Bhatt US, Colony RL, Johnson MA, Maskshtas AP, Walsh D (2003) Variability and trends of air temperature and pressure in the maritime Arctic, 1875–2000. J Clim 16:2067–2077CrossRefGoogle Scholar
  41. Pongratz J, Reick C, Raddatz T, Claussen M (2008) A reconstruction of global agricultural areas and land cover for the last millennium. Glob Biogeo-chem Cycles 22:GB3018Google Scholar
  42. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108:4407CrossRefGoogle Scholar
  43. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791CrossRefGoogle Scholar
  44. Scherhag R (1939) Die Erwärmung des Polargebiets. Annalen der Hydrographie 67:57–67Google Scholar
  45. Schlesinger ME, Ramankutty N (1994) An oscillation in the global climate system of period 65–70 years. Nature 367:723–726CrossRefGoogle Scholar
  46. Semenov V, Latif M (2012) The early twentieth century warming and winter Arctic sea ice. Cryosphere 6:1231–1237CrossRefGoogle Scholar
  47. Serreze MC, Barry RG (2011) Processes and impacts of Arctic amplification: a research synthesis. Glob Planet Change 77:85–96CrossRefGoogle Scholar
  48. Swart NC, Fyfe JC, Gillett N, Marshall GJ (2015) Comparing trends in the southern annular mode and surface westerly jet. J Clim 28:8840–8859CrossRefGoogle Scholar
  49. Thompson DM, Cole JE, Shen GT, Tudhope AW, Meehl GA (2015) Early twentieth-century warming linked to tropical pacific wind strength. Nat Geosci 8:117–121CrossRefGoogle Scholar
  50. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  51. Wagner A (1940) Klimaänderungen und Klimaschwankungen. Vieweg + Teubner Verlag. BraunschweigCrossRefGoogle Scholar
  52. Wegmann M, Brönnimann S, Bhend J, Franke J, Folini D, Wild M, Luterbacher J (2014) Volcanic influence on European summer precipitation through monsoons: possible cause for “Years without Summer”*. J Clim 27:3683–3691CrossRefGoogle Scholar
  53. Wood KR, Overland JE (2010) Early 20th century Arctic warming in retrospect. Int J Climatol 30:1269–1279Google Scholar
  54. Wood KR, Overland JE, Jónsson T, Smoliak BV (2010) Air temperature variations on the AtlanticArctic boundary since 1802. Geophys Res Lett 37:L17708CrossRefGoogle Scholar
  55. Yoshimori M, Raible CC, Stocker TF, Renold M (2010) Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Clim Dyn 34:101–121CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Martin Wegmann
    • 1
    • 2
  • Stefan Brönnimann
    • 1
    • 2
  • Gilbert P. Compo
    • 3
    • 4
  1. 1.Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  2. 2.Institute of GeographyUniversity of BernBernSwitzerland
  3. 3.Cooperative Institute for Research in Environmental SciencesUniversity of ColoradoBoulderUSA
  4. 4.Physical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA

Personalised recommendations