Climate Dynamics

, Volume 48, Issue 7–8, pp 2297–2314 | Cite as

Impact of the Madden Julian Oscillation on the summer West African monsoon in AMIP simulations

  • Coumba Niang
  • Elsa Mohino
  • Amadou T. Gaye
  • J. Bayo Omotosho
Article

Abstract

At intraseasonal timescales, convection over West Africa is modulated by the Madden Julian Oscillation (MJO). In this work we investigate the simulation of such relationship by 11 state-of-the-art atmospheric general circulation models runs with prescribed observed sea surface temperatures. In general, the Atmospheric Model Intercomparison Project simulations show good skill in capturing the main characteristics of the summer MJO as well as its influence on convection and rainfall over West Africa. Most models simulate an eastward spatiotemporal propagation of enhanced and suppressed convection similar to the observed MJO, although their signal over West Africa is weaker in some models. In addition, the ensemble average of models’ composites gives a better performance in reproducing the main features and timing of the MJO and its impact over West Africa. The influence on rainfall is well captured in both Sahel and Guinea regions thereby adequately producing the transition between positive and negative rainfall anomalies through the different phases as in the observations. Furthermore, the results show that a strong active convection phase is clearly associated with a stronger African Easterly Jet (AEJ) but the weak convective phase is associated with a much weaker AEJ. Our analysis of the equatorial waves suggests that the main impact over West Africa is established by the propagation of low-frequency waves within the MJO and Rossby spectral peaks. Results from the simulations confirm that it may be possible to predict anomalous convection over West Africa with a time lead of 15–20 day.

Keywords

Madden Julian Oscillation Summer rainfall West Africa AMIP simulations 

Supplementary material

382_2016_3206_MOESM1_ESM.doc (6 mb)
Supplementary material 1 (DOC 6156 kb)

References

  1. Barlow M, Wheeler M, Lyon B, Cullen H (2005) Modulation of daily precipitation over southwest Asia by the Madden–Julian oscillation. Mon Weather Rev 133:3579–3594CrossRefGoogle Scholar
  2. Bond NA, Vecchi GA (2003) The influence of the Madden–Julian oscillation (MJO) on precipitation in Oregon and Washington. Weather Forecast 18(4):600–613CrossRefGoogle Scholar
  3. Carvalho L, Jones C, Liebmann B (2004) The South Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J Clim 17:88–108CrossRefGoogle Scholar
  4. CLIVAR Madden-Julian Oscillation Working Group (2009) MJO simulation diagnostics. J Clim 22:3006–3030. doi:10.1175/2008JCLI2731.1 CrossRefGoogle Scholar
  5. Crueger T, Stevens B, Brokopf R (2013) The Madden–Julian oscillation in ECHAM6 and the introduction of an objective MJO metric. J Clim 26:3241–3257. doi:10.1175/JCLI-D-12-00413.1 CrossRefGoogle Scholar
  6. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  7. Donald A et al (2006) Near-global impact of the Madden–Julian oscillation on rainfall. Geophys Res Lett 33:L09704. doi:10.1029/2005GL025155 CrossRefGoogle Scholar
  8. Gadgil S, Rao PRS (2000) Farming strategies for a variable climate—a challenge. Curr Sci 78:1203–1215Google Scholar
  9. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Nino in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340CrossRefGoogle Scholar
  10. Hayashi Y (1982) Space–time spectral analysis and its applications to atmospheric waves. J Oceanogr Soc Jpn 60:156–171Google Scholar
  11. Hendon HH, Zhang CD, Glick JD (1999) Interannual variation of the Madden–Julian oscillation during austral summer. J Clim 12:2538–2550CrossRefGoogle Scholar
  12. Higgins W, Schemm J, Shi W, Leetmaa A (2000) Extreme precipitation events in the western United States related to tropical forcing. J Clim 13:793–820CrossRefGoogle Scholar
  13. Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2:36–50CrossRefGoogle Scholar
  14. Hung MP, Lin JL, Wang W, Kim D, Shinoda T, Weaver SJ (2013) MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J Clim 26:6185–6214. doi:10.1175/JCLI-D-12-00541.1 CrossRefGoogle Scholar
  15. Janicot S, Sultan J (2001) Intra-seasonal modulation of convection in the West African monsoon. Geophys Res Lett 28:523–526CrossRefGoogle Scholar
  16. Janicot S, Mounier F, Gervois S, Hall JN, Leroux S, Sultan B, Kiladis GN (2009) The dynamics of the West African monsoon. Part IV: analysis 25–90-day variability of convection and the role of the Indian monsoon. J Clim 22:1541–1565. doi:10.1175/2008JCLI2314.1 CrossRefGoogle Scholar
  17. Jones C, Schemm JE (2000) The influence of intraseasonal variations on medium-to extended-range weather forecasts over South America. Mon Weather Rev 128:486–494CrossRefGoogle Scholar
  18. Jones C, Waliser DE, Lau WK, Stern W (2000) Prediction skill of the Madden and Julian oscillation in dynamical extended range forecasts. Clim Dyn 16:273–289CrossRefGoogle Scholar
  19. Jones C, Waliser DE, Lau WK, Stern W (2004a) The Madden–Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon Weather Rev 132:1462–1471CrossRefGoogle Scholar
  20. Jones C, Carvalho LMV, Higgins RW et al (2004b) Statistical forecast skill of tropical intraseasonal convective anomalies. J Clim 17:2078–2095CrossRefGoogle Scholar
  21. Kessler WS (2001) EOF representations of the Madden–Julian oscillation and its connection with ENSO. J Clim 14:3055–3061CrossRefGoogle Scholar
  22. Kim D, Sperber K, Stern W, Waliser D, Kang IS, Maloney E, Schubert S, Wang W, Weickmann K, Benedict J, Khairoutdinov M, Lee MI, Neale R, Suarez M, ThayerCalder K, Zhang G (2009) Application of MJO simulation diagnostics to climate models. J Clim 22:6413–6436CrossRefGoogle Scholar
  23. Knutson T, Weickmann K (1987) 30-60 day atmospheric oscillations: composite life cycles of convection and circulation anomalies. Mon Weather Rev 115:1407–1436CrossRefGoogle Scholar
  24. Lavender SL, Matthews AJ (2009) Response of the West African monsoon to the Madden–Julian oscillation. J Clim 22:4097–4116CrossRefGoogle Scholar
  25. Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277Google Scholar
  26. Liebmann B, Hendon HH, Glick JD (1994) The relationship between tropical cyclones of the western Pacific and Indian Oceans and the Madden–Julian oscillation. J Meteorol Soc Jpn 72:401–411Google Scholar
  27. Liebmann B, Kiladis GN, Vera CS, Saulo AC, Carvalho LMV (2004) Subseasonal variations of rainfall in South America in the vicinity of the low-level jet east of the Andes and comparison to those in the South Atlantic convergence zone. J Clim 17:3829–3842CrossRefGoogle Scholar
  28. Lin JL, Kiladis GN, Mapes BE, Weickmann KM, Sperber KR, Lin W, Wheeler MC, Schubert SD, Del Genio A, Donner LJ, Emori S, Gueremy JF, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4 climate models: part I: convective signals. J Clim 19:2665–2690. doi:10.1175/JCLI3735.1 CrossRefGoogle Scholar
  29. Madden RA, Julian PR (1971) Description of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708CrossRefGoogle Scholar
  30. Madden RA, Julian PR (1994) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. Mon Weather Rev 122:813–837CrossRefGoogle Scholar
  31. Maloney E, Hartmann D (2000) Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J Clim 13:1451–1460CrossRefGoogle Scholar
  32. Maloney E, Shaman J (2008) Intraseasonal variability of the West African monsoon and Atlantic ITCZ. J Clim 12:2898–2918CrossRefGoogle Scholar
  33. Matthews A (2004) Intraseasonal variability over the tropical Africa during northern summer. J Clim 17:2427–2440CrossRefGoogle Scholar
  34. Mauritsen T et al (2012) Tuning the climate of a global model. J Adv Model Earth Syst 4:M00A01. doi:10.1029/2012MS000154 CrossRefGoogle Scholar
  35. Milliff RF, Madden RA (1996) The existence and vertical structure of fast, eastward-moving disturbances in the equatorial troposphere. J Atmos Sci 53:586–597CrossRefGoogle Scholar
  36. Mohino E, Janicot S, Douville H, Li ZXL (2012) Impact of the Indian part of the summer MJO on West Africa using nudged climate simulations. Clim Dyn 38:2319–2334. doi:10.1007/s00382-011-1206-y CrossRefGoogle Scholar
  37. Mounier F, Janicot S (2004) Evidence of two independent modes of convection at intraseasonal timescale in the West African summer monsoon. Geophys Res Lett 31:L16116. doi:10.1029/2004GL020665 CrossRefGoogle Scholar
  38. Mounier F, Kiladis GN, Janicot S (2007) Analysis of the dominant mode of convectively coupled Kelvin waves in the West African monsoon. J Clim 20:1487–1503CrossRefGoogle Scholar
  39. North GR, Bell TL, Cahalan RF (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706CrossRefGoogle Scholar
  40. Omotosho JB, Abiodun BJ (2007) A numerical study of moisture build-up and rainfall over West Africa. Meteorol Appl 14(3):209–225CrossRefGoogle Scholar
  41. Pohl B, Janicot S, Fontaine B, Marteau R (2009) Implication of the Madden–Julian oscillation in the 40-day variability of the West African monsoon. J Clim 22:3769–3785CrossRefGoogle Scholar
  42. Randall DA et al (2007) Climate models and their evaluation. Climate change 2007: the physical science basis. In: Solomon S et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 589–662Google Scholar
  43. Roundy PE (2012) Observed structure of convectively coupled waves as a function of equivalent depth: Kelvin waves and the Madden–Julian oscillation. J Atmos Sci 69:2097–2106. doi:10.1175/JAS-D-12-03.1 CrossRefGoogle Scholar
  44. Roundy PE, Frank WM (2004a) A climatology of waves in the equatorial region. J Atmos Sci 61:2105–2132CrossRefGoogle Scholar
  45. Roundy PE, Frank WM (2004b) Effects of low-frequency wave interactions on intraseasonal oscillations. J Atmos Sci 61:3025–3040CrossRefGoogle Scholar
  46. Slingo JM et al (1996) Intraseasonal oscillation in 15 atmospheric general circulation models: results from an AMIP diagnostic subproject. Clim Dyn 12:325–357CrossRefGoogle Scholar
  47. Sobel AH, Kim D (2012) The MJO–Kelvin wave transition. Geophys Res Lett 39(L20808):2012G. doi:10.1029/L053380 Google Scholar
  48. Sultan B, Janicot S, Diedhiou A (2003) The West African monsoon dynamics. Part I: documentation of intraseasonal variability. J Clim 16:3390–3406Google Scholar
  49. Sultan B, Baron C, Dingkuhn M, Sarr B, Janicot S (2005) Agricultural impacts of large-scale variability of the West African monsoon. Agric For Meteorol 128:93–110CrossRefGoogle Scholar
  50. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  51. Venegas SA (2001) Statistical methods for signal detection in climate. Danish Center for Earth System ScienceGoogle Scholar
  52. Ventrice MJ, Thorncroft CD, Roundy PE (2011) The Madden Julian’s oscillation on African easterly waves and downstream tropical cyclogenesis. Mon Weather Rev 139:2704–2722CrossRefGoogle Scholar
  53. Waliser DE, Lau KM, Kim JH (1999) The influence of coupled sea surface temperatures on the Madden–Julian oscillation: a model perturbation experiment. J Atmos Sci 56:333–358CrossRefGoogle Scholar
  54. Waliser DE et al (2003) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim Dyn 21:423–446CrossRefGoogle Scholar
  55. Wang W, Schlesinger ME (1999) The dependence on convective parameterization of the tropical intraseasonal oscillation simulated by the UIUC 11-layer atmospheric GCM. J Clim 12:1423–1457CrossRefGoogle Scholar
  56. Wheeler M, Hendon H (2004) An all-season real-time multivariate MJO index: development of an index for monitoring and prediction. Mon Weather Rev 132:1917–1932CrossRefGoogle Scholar
  57. Wheeler M, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber–frequency domain. J Atmos Sci 56:374–399CrossRefGoogle Scholar
  58. Wheeler MC, McBride JL (2005) Australian–Indonesian monsoon. In: Lau WKM, Waliser DE (eds) Intraseasonal variability of the atmosphere–ocean climate system. Praxis Publishing, Chichester, p 436Google Scholar
  59. Wheeler M, Kiladis GN, Webster PJ (2000) Large-scale dynamical fields associated with convectively coupled equatorial waves. J Atmos Sci 57:613–640CrossRefGoogle Scholar
  60. Yasunari T (1979) Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J Meteorol Soc Jpn 57:227–242Google Scholar
  61. Zhang CD (2005) Madden–Julian oscillation. Rev Geophys 43(RG2003):2004R. doi:10.1029/G000158 Google Scholar
  62. Zhang C, Dong M, Gualdi S, Hendon HH, Maloney ED, Marshall A, And Sperber KR, Wang W (2006) Simulations of the Madden–Julian oscillation in four pairs of coupled and uncoupled global models. Clim Dyn 27:573–592. doi:10.1007/s00382-006-0148-2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Laboratoire de Physique de l’Atmosphère et de l’Océan Siméon Fongang (LPAO-SF), Ecole Supérieure Polytechnique (ESP)Université Cheikh Anta DiopDakar-FannSenegal
  2. 2.Instituto de Geociencias (IGEO)Agencia Estatal Consejo Superior de Investigaciones Cientificas CSICMadridSpain
  3. 3.Departamento de Fisica de la Tierra, Astronomia y Astrofisica I, Geofisica y MeteorologiaUniversidad Complutense de Madrid (UCM)MadridSpain
  4. 4.WASCAL, Department of MeteorologyFederal University of Technology AkureOndo StateNigeria
  5. 5.Instituto de Ciencias MatematicasCSIC-UAM-UC3M-UCMMadridSpain

Personalised recommendations