Advertisement

Climate Dynamics

, Volume 51, Issue 3, pp 837–855 | Cite as

Potential of microwave observations for the evaluation of rainfall and convection in a regional climate model in the frame of HyMeX and MED-CORDEX

  • Jean-François Rysman
  • Ségolène Berthou
  • Chantal Claud
  • Philippe Drobinski
  • Jean-Pierre Chaboureau
  • Julien Delanoë
Article

Abstract

This study evaluates the potential of spaceborne passive microwave observations for assessing decadal simulations of precipitation from a regional climate model through a model-to-satellite approach. A simulation from the Weather and Research Forecasting model is evaluated against 2002–2012 observations from the Advanced Microwave Sounding Unit and the Microwave Humidity Sounder over the Mediterranean region using the radiative transfer code Radiative Transfer for Tiros Operational Vertical Sounder. It is first shown that simulated and observed brightness temperatures are consistently correlated for both water vapour and window channels. Yet, although the average simulated and observed brightness temperatures are similar, the range of brightness temperatures is larger in the observations. The difference is presumably due to the too low content of frozen particles in the simulation. To assess this hypothesis, density and altitude of simulated frozen hydrometeors are compared with observations from an airborne cloud radar. Results show that simulated frozen hydrometeors are found at lower median altitude than observed frozen hydrometeors, with an average content at least 5 times inferior. Spatial distributions of observed and simulated precipitation match reasonably well. However, when using simulated brightness temperatures to diagnose rainfall, the simulation performs very poorly. These results highlight the need of providing more realistic frozen hydrometeors content, which will increase the interest of using passive microwave observations for the long-term evaluation of regional models. In particular, significant improvements are expected from the archiving of convective fluxes of precipitating hydrometeors in future regional model simulation programs.

Keywords

Convection HyMeX MED-CORDEX Passive microwave observations Precipitation Radar observations Radiative transfer model Regional model 

Notes

Acknowledgments

We would like to acknowledge Karine Béranger and Aurélien Podglajen for their insightful comments. We would also like to acknowledge the three referees for their careful proofreading of this paper and their suggestions that greatly improved this study. This work is a contribution to the HyMeX program (Hydrological cycle in The Mediterranean eXperiment) through INSU-MISTRALS support and the Med-CORDEX program (COordinated Regional climate Downscaling EXperiment Mediterranean region). This study was sponsored by the Direction Générale de l’Armement (PRECIP-CLOUD project), Earth2Observe project (funding from the European Union’s Framework Programme under grant agreement number 603608), the ANR-14-CE01-0014 MUSIC project, the ANR-12-SENV-001 REMEMBER project, the ANR-11-BS56-0005 IODA-MED project and the Centre National d’Études Spatiales (CNES). It was also supported by the IPSL group for regional climate and environmental studies, with granted access to the HPC resources of IDRIS (under allocation i2011010227). The authors acknowledge the HyMeX database teams (ESPRI/IPSL and SEDOO/Observatoire Midi-Pyrénées), the French Mixed Service Unit project ICARE/climserv and the MED-CORDEX database team at ENEA for their help in accessing the data (AMSU-B and MHS data, RASTA data and the IPSL WRF and MORCE regional climate simulations). It is also a contribution to the cross-cutting activity on sub-daily precipitation of the GEWEX program of the World Climate Research Program (WCRP) (GEWEX Hydroclimate Panel).

References

  1. Aires F, Prigent C, Bernardo F, Jiménez C, Saunders R, Brunel P (2011) A tool to estimate land-surface emissivities at microwave frequencies (telsem) for use in numerical weather prediction. Q J R Meteorol Soc 137(656):690–699CrossRefGoogle Scholar
  2. Argence S, Lambert D, Richard E, Chaboureau JP, Söhne N (2008) Impact of initial condition uncertainties on the predictability of heavy rainfall in the mediterranean: a case study. Q J R Meteorol Soc 134(636):1775–1788CrossRefGoogle Scholar
  3. Barkhordarian A, von Storch H, Bhend J (2013) The expectation of future precipitation change over the mediterranean region is different from what we observe. Clim Dyn 40(1–2):225–244CrossRefGoogle Scholar
  4. Bennartz R, Bauer P (2003) Sensitivity of microwave radiances at 85–183 ghz to precipitating ice particles. Radio Sci 38(4). doi: 10.1029/2002RS002626
  5. Bennartz R, Petty GW (2001) The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J Appl Meteorol 40(3):345–364CrossRefGoogle Scholar
  6. Berthou S, Mailler S, Drobinski P, Arsouze T, Bastin S, Béranger K, Lebeaupin-Brossier C (2014) Prior history of mistral and tramontane winds modulates heavy precipitation events in southern france. Tellus A 66. doi: 10.3402/tellusa.v66.24064
  7. Berthou S, Mailler S, Drobinski P, Arsouze T, Bastin S, Béranger K, Lebeaupin-Brossier C (2015) Sensitivity of an intense rain event between atmosphere-only and atmosphere–ocean regional coupled models: 19 september 1996. Q J R Meteorol Soc 141(686):258–271CrossRefGoogle Scholar
  8. Berthou S, Mailler S, Drobinski P, Arsouze T, Bastin S, Béranger K, Flaounas E, Lebeaupin-Brossier C, Stéfanon M (2016) Influence of submonthly air–sea coupling on heavy precipitation events in the western mediterranean basin. Q J R Meteorol Soc. doi: 10.1002/qj.2717
  9. Bonsignori R (2007) The microwave humidity sounder (MHS): in-orbit performance assessment. In: Society of photo-optical instrumentation engineers (SPIE) conference series, Society of Photo-Optical Instrumentation Engineers (SPIE) conference series, vol 6744. doi: 10.1117/12.737986
  10. Bouniol D, Protat A, Plana-Fattori A, Giraud M, Vinson JP, Grand N (2008) Comparison of airborne and spaceborne 95-ghz radar reflectivities and evaluation of multiple scattering effects in spaceborne measurements. J Atmos Ocean Technol 25:1983. doi: 10.1175/2008JTECHA1011.1 CrossRefGoogle Scholar
  11. Bresson E, Ducrocq V, Nuissier O, Ricard D, de Saint-Aubin C (2012) Idealized numerical simulations of quasi-stationary convective systems over the northwestern Mediterranean complex terrain. Quart J R Meteorol Soc 138(668):1751–1763. doi: 10.1002/qj.1911 CrossRefGoogle Scholar
  12. Burns B, Wu X, Diak GR et al (1997) Effects of precipitation and cloud ice on brightness temperatures in AMSU moisture channels. IEEE Trans Geosci Remote Sens 35(6):1429–1437CrossRefGoogle Scholar
  13. Casella D, Panegrossi G, Sano P, Dietrich S, Mugnai A, Smith E, Tripoli GJ, Formenton M, Di Paola F, Leung WYH et al (2013) Transitioning from crd to cdrd in bayesian retrieval of rainfall from satellite passive microwave measurements: part 2. overcoming database profile selection ambiguity by consideration of meteorological control on microphysics. IEEE Trans Geosci Remote Sens 51(9):4650–4671Google Scholar
  14. Chaboureau JP, Söhne N, Pinty JP, Meirold-Mautner I, Defer E, Prigent C, Pardo JR, Mech M, Crewell S (2008) A midlatitude cloud database validated with satellite observations. J Appl Meteor Climatol 47:1337–1353. doi: 10.1175/2007JAMC1731.1 CrossRefGoogle Scholar
  15. Chakroun M, Bastin S, Chiriaco M, Chepfer H (2016) Characterization of vertical cloud variability over europe using spatial lidar observations and regional simulation. Clim Dyn 1–23. doi: 10.1007/s00382-016-3037-3
  16. Clark H, Chaboureau JP (2010) Uncertainties in short-term forecasts of a Mediterranean heavy precipitation event: assessment with satellite observations. J Geophys Res 115:D22213. doi: 10.1029/2010JD014388 CrossRefGoogle Scholar
  17. Claud C, Alhammoud B, Funatsu BM, Lebeaupin-Brossier C, Chaboureau JP, Béranger K, Drobinski P (2012) A high resolution climatology of precipitation and deep convection over the Mediterranean region from operational satellite microwave data: development and application to the evaluation of model uncertainties. Nat Hazards Earth System Sci 12:785–798. doi: 10.5194/nhess-12-785-2012 CrossRefGoogle Scholar
  18. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hlm EV, Isaksen L, Kllberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  19. Deeter M, Vivekanandan J (2005) Amsu-b observations of mixed-phase clouds over land. J Appl Meteorol 44(1):72–85CrossRefGoogle Scholar
  20. Defer E, Prigent C, Aires F, Pardo JR, Walden CJ, Zanif OZ, Chaboureau JP, Pinty JP (2008) Development of precipitation retrievals at millimeter and submillimeter wavelengths for geostationary satellites. J Geophys Res 113(D08):111. doi: 10.1029/2007JD008,673 Google Scholar
  21. Delanoë J, Protat A, Bouniol D, Heymsfield A, Bansemer A, Brown P (2007) The characterization of ice cloud properties from Doppler Radar measurements. J Appl Meteorol Climatol 46:1682. doi: 10.1175/JAM2543.1 CrossRefGoogle Scholar
  22. Delanoë J, Protat A, Jourdan O, Pelon J, Papazzoni M, Dupuy R, Gayet JF, Jouan C (2013) Comparison of airborne in situ, airborne radar-lidar, and spaceborne radar-lidar retrievals of polar ice cloud properties sampled during the POLARCAT campaign. J Atmos Ocean Technol 30:57–73. doi: 10.1175/JTECH-D-11-00200.1 CrossRefGoogle Scholar
  23. Delanoë J, Heymsfield AJ, Protat A, Bansemer A, Hogan RJ (2014) Normalized particle size distribution for remote sensing application. J Geophys Res (Atmos) 119:4204–4227. doi: 10.1002/2013JD020700 CrossRefGoogle Scholar
  24. Drobinski P, Anav A, Lebaupin-Brossier C, Samson G, Stéfanon M, Bastin S, Baklouti M, Béranger K, Beuvier J, Bourdallé-Badie R, Coquart L, D’Andrea F, De Noblet-Ducoudr N, Diaz F, Dutay J, Ethe C, Foujols M, Khvorostyanov D, Madec G, Mancip M, Masson S, Menut L, Palmieri J, Polcher J, Turquety S, Valcke S, Viovy N (2012) Modelling the regional coupled earth system (morce): application to process and climate studies in vulnerable regions. Environ Model Softw 35:1–18CrossRefGoogle Scholar
  25. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Borga M, Braud I, Chanzy A, Delrieu G, Estournel C, Boubrahmi NF, Font J, Grubisic V, Gualdi S, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX, a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 5(24):1063–1082Google Scholar
  26. Ducrocq V, Nuissier O, Ricard D, Lebeaupin C, Thouvenin T (2008) A numerical study of three catastrophic precipitating events over southern France. II: mesoscale triggering and stationarity factors. Q J R Meteorol Soc 134(630):131–145. doi: 10.1002/qj.199 CrossRefGoogle Scholar
  27. Ducrocq V, Braud I, Ferretti R, Davolio S, Flamant C, Jansa A, Kalthoff N, Taupier-letage I, Ayral Pa, Berne A, Borga M, Boudevillain B, Boichard Jl, Bousquet O, Bouvier C, Chiggiato J, Cimini D, Coppola L, Cocquerez P, Defer E, Girolamo PD, Doerenbecher A, Dufournet Y, Gourley JJ, Labatut L, Lambert D, Frank S, Montani A, Nord G, Nuret M, Ramage K, Rison B, Roussot O, Schwarzenboeck A, Testor P, Tamayo J (2014) HyMeX-SOP1, the field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull Am Meteorol Soc 11:1–59Google Scholar
  28. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46(20):3077–3107CrossRefGoogle Scholar
  29. Duffourg F, Ducrocq V (2011) Origin of the moisture feeding the heavy precipitating systems over southeastern France. Nat Hazards Earth Syst Sci 11(4):1163–1178. doi: 10.5194/nhess-11-1163-2011 CrossRefGoogle Scholar
  30. Duffourg F, Ducrocq V (2013) Assessment of the water supply to Mediterranean heavy precipitation: a method based on finely designed water budgets: water supply to HPEs: assessment with water budgets. Atmos Sci Lett 14(3):133–138. doi: 10.1002/asl2.429 CrossRefGoogle Scholar
  31. Eyre J (1991) A fast radiative transfer model for satellite sounding systems. European Centre for Medium-Range Weather ForecastsGoogle Scholar
  32. Ferraro R, Beauchamp J, Cecil D, Heymsfield G (2015) A prototype hail detection algorithm and hail climatology developed with the advanced microwave sounding unit (amsu). Atmos Res 163:24–35CrossRefGoogle Scholar
  33. Ferraro RR, Weng F, Grody NC, Zhao L (2000) Precipitation characteristics over land from the NOAA-15 AMSU sensor. Geophys Res Lett 27(17):2669–2672CrossRefGoogle Scholar
  34. Ferraro RR, Weng F, Grody NC, Zhao L, Meng H, Kongoli C, Pellegrino P, Qiu S, Dean C (2005) NOAA operational hydrological products derived from the advanced microwave sounding unit. IEEE Trans Geosci Remote Sens 43(5):1036–1049CrossRefGoogle Scholar
  35. Field P, Heymsfield AJ (2015) Importance of snow to global precipitation. Geophys Res Lett n/a–n/a, doi: 10.1002/2015GL065497, 2015GL065497
  36. Field PR, Heymsfield AJ, Bansemer A (2007) Snow size distribution parameterization for midlatitude and tropical ice clouds. J Atmos Sci 64(12):4346–4365CrossRefGoogle Scholar
  37. Flaounas E, Drobinski P, Vrac M, Bastin S, Lebeaupin-Brossier C, Stéfanon M, Borga M, Calvet JC (2013) Precipitation and temperature space-time variability and extremes in the mediterranean region: evaluation of dynamical and statistical downscaling methods. Clim Dyn 40(11–12):2687–2705CrossRefGoogle Scholar
  38. Fontaine E, Schwarzenboëck A, Delanoë J, Dupuy R, Leroy D, Duroure C, Gourbeyre C, Fournol JF, Febvre G (2013) Determination of area-diameter and mass-diameter relationships from ice particle imagery in order to deduce iwc within mid- latitude convective clouds observed over the mediterranean basin, 7th HyMeX Workshop. Cassis, FranceGoogle Scholar
  39. Funatsu BM, Claud C, Chaboureau JP (2007) Potential of advanced microwave sounding unit to identify precipitating systems and associated upper-level features in the mediterranean region: case studies. J Geophys Res (Atmos) 112(11):D17113CrossRefGoogle Scholar
  40. Funatsu BM, Claud C, Chaboureau JP (2008) A 6-year AMSU-based climatology of upper-level troughs and associated precipitation distribution in the Mediterranean region. J Geophys Res (Atmos) 113(12):D15120. doi: 10.1029/2008JD009918 CrossRefGoogle Scholar
  41. Funatsu BM, Claud C, Chaboureau JP (2009) Comparison between the large-scale environments of moderate and intense precipitating systems in the mediterranean region. Mon Weather Rev 137:3933. doi: 10.1175/2009MWR2922.1 CrossRefGoogle Scholar
  42. García-Herrera R, Barriopedro D, Hernández E, Paredes D, Correoso JF, Prieto L (2005) The 2001 mesoscale convective systems over Iberia and the Balearic islands. Meteorol Atmos Phys 90(3–4):225–243. doi: 10.1007/s00703-005-0114-2 CrossRefGoogle Scholar
  43. Geer A, Baordo F (2014) Improved scattering radiative transfer for frozen hydrometeors at microwave frequencies. Atmos Meas Techn 7(6):1839–1860CrossRefGoogle Scholar
  44. Gloersen P, Barath FT (1977) A scanning multichannel microwave radiometer for Nimbus-G and Seasat-A. IEEE J Ocean Eng 2(2):172–178CrossRefGoogle Scholar
  45. Guerbette J, Mahfouf JF, Plu M (2016) Towards the assimilation of all-sky microwave radiances from the saphir humidity sounder in a limited area nwp model over tropical regions. Tellus A 68. doi: 10.3402/tellusa.v68.28620
  46. Haylock M, Hofstra N, Klein Tank A, Klok E, Jones P, M N (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113(D20):119. doi: 10.1029/2008JD10201 CrossRefGoogle Scholar
  47. Hong G, Heygster G, Miao J, Kunzi K (2005a) Detection of tropical deep convective clouds from amsu-b water vapor channels measurements. J Geophys Res Atmos (1984–2012) 110(D5). doi: 10.1029/2004JD004949
  48. Hong G, Heygster G, Miao J, Kunzi K (2005b) Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz. Radio Sci 40(4). doi: 10.1029/2004RS003129
  49. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132(1):103–120CrossRefGoogle Scholar
  50. Houze RA (2004) Mesoscale convective systems. Rev Geophys 42(4). doi: 10.1029/2004RG000150
  51. Jansà A, Genovés A, Picornell M, Campins J, Riosalido R, Carretero O (2001) Western Mediterranean cyclones and heavy rain. part 2: statistical approach. Meteorol Appl 8(1):43–56CrossRefGoogle Scholar
  52. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43(1):170–181. doi: 10.1175/1520-0450(2004)043 CrossRefGoogle Scholar
  53. Karbou F, Aires F, Prigent C, Eymard L (2005) Potential of advanced microwave sounding unit-A (AMSU-A) and AMSU-B measurements for atmospheric temperature and humidity profiling over land. J Geophys Res Atmos (1984–2012) 110(D7). doi: 10.1029/2004JD005318
  54. Kendon EJ, Roberts NM, Senior CA, Roberts MJ (2012) Realism of rainfall in a very high-resolution regional climate model. J Clim 25(17):5791–5806. doi: 10.1175/JCLI-D-11-00562.1 CrossRefGoogle Scholar
  55. Kidd C, Matsui T, Chern J, Mohr K, Kummerow C, Randel D (2016) Global precipitation estimates from cross-track passive microwave observations using a physically based retrieval scheme. J Hydrometeorol 17(1):383–400CrossRefGoogle Scholar
  56. Kim MJ, Kulie MS, O’Dell C, Bennartz R (2007) Scattering of ice particles at microwave frequencies: a physically based parameterization. J Appl Meteorol Climatol 46(5):615–633CrossRefGoogle Scholar
  57. Kummerow C, Giglio L (1994) A passive microwave technique for estimating rainfall and vertical structure information from space. Part I: algorithm description. J Appl Meteorol 33(1):3–18CrossRefGoogle Scholar
  58. Kummerow C, Hong Y, Olson W, Yang S, Adler R, McCollum J, Ferraro R, Petty G, Shin DB, Wilheit T (2001) The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J Appl Meteorol 40(11):1801–1820CrossRefGoogle Scholar
  59. Laviola S, Levizzani V (2011) The 183-WSL fast rain rate retrieval algorithm: Part I: retrieval design. Atmos Res 99:443–461. doi: 10.1016/j.atmosres.2010.11.013 CrossRefGoogle Scholar
  60. Lebeaupin-Brossier C, Drobinski P, Béranger K, Bastin S, Orain F (2013) Ocean memory effect on the dynamics of coastal heavy precipitation preceded by a mistral event in the northwestern mediterranean. Q J R Meteorol Soc 139(675):1583–1597CrossRefGoogle Scholar
  61. Lebeaupin-Brossier C, Bastin S, Béranger K, Drobinski P (2015) Regional mesoscale air–sea coupling impacts and extreme meteorological events role on the mediterranean sea water budget. Clim Dyn 44(3–4):1029–1051. doi: 10.1007/s00382-014-2252-z CrossRefGoogle Scholar
  62. Liu G (2008) A database of microwave single-scattering properties for nonspherical ice particles. Bull Am Meteorol Soc 89(10):1563–1570CrossRefGoogle Scholar
  63. Marzano FS, Mugnai A, Panegrossi G, Pierdicca N, Smith E, Turk J et al (1999) Bayesian estimation of precipitating cloud parameters from combined measurements of spaceborne microwave radiometer and radar. IEEE Trans Geosci Remote Sens 37(1):596–613CrossRefGoogle Scholar
  64. Matricardi M, Chevallier F, Kelly G, Thépaut JN (2004) An improved general fast radiative transfer model for the assimilation of radiance observations. Q J R Meteorol Soc 130(596):153–173CrossRefGoogle Scholar
  65. Meirold-Mautner I, Prigent C, Defer E, Pardo JR, Chaboureau JP, Pinty JP, Mech M, Crewell S (2007) Radiative transfer simulations using mesoscale cloud model outputs: comparisons with passive microwave and infrared satellite observations for midlatitudes. J Atmos Sci 64(5):1550–1568CrossRefGoogle Scholar
  66. Michele SD, Tassa A, Mugnai A, Marzano FS, Bauer P, Baptista JPVP (2005) Bayesian algorithm for microwave-based precipitation retrieval: description and application to tmi measurements over ocean. IEEE Trans Geosci Remote Sens 43(4):778–791CrossRefGoogle Scholar
  67. Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res Atmos (1984–2012) 102(D14):16,663–16,682CrossRefGoogle Scholar
  68. Mugnai A, Smith EA (1988) Radiative transfer to space through a precipitating cloud at multiple microwave frequencies. Part I: model description. J Appl Meteorol 27(9):1055–1073CrossRefGoogle Scholar
  69. Mugnai A, Cooper HJ, Smith EA, Tripoli GJ (1990) Simulation of microwave brightness temperatures of an evolving hailstorm at SSM/I frequencies. Bull Am Meteorol Soc 71(1):2–13CrossRefGoogle Scholar
  70. Mülmenstädt J, Sourdeval O, Delanoë J, Quaas J (2015) Frequency of occurrence of rain from liquid, mixed-, and ice-phase clouds derived from a-train satellite retrievals. Geophys Res Lett 42(15):6502–6509CrossRefGoogle Scholar
  71. Noh Y, Cheon WG, Hong SY, Raasch S (2003) Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound Layer Meteorol 107(2):401–427. doi: 10.1023/A:1022146015946 CrossRefGoogle Scholar
  72. Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: investigation in a big-brother experiment over the European and mediterranean regions. Clim Dyn 41(9–10):2451–2470CrossRefGoogle Scholar
  73. Omrani H, Drobinski P, Dubos T (2015) Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: what should we nudge? Clim Dyn 44(5–6):1627–1644CrossRefGoogle Scholar
  74. Panegrossi G, Dietrich S, Marzano FS, Mugnai A, Smith EA, Xiang X, Tripoli GJ, Wang PK, Poiares Baptista JPV (1998) Use of cloud model microphysics for passive microwave-based precipitation retrieval: significance of consistency between model and measurement manifolds. J Atmos Sci 55:1644–1673CrossRefGoogle Scholar
  75. Pastor F, Gmez I, Estrela MJ (2010) Numerical study of the October 2007 flash flood in the Valencia region (Eastern Spain): the role of orography. Nat Hazards Earth Syst Sci 10(6):1331–1345. doi: 10.5194/nhess-10-1331-2010 CrossRefGoogle Scholar
  76. Pastor F, Valiente JA, Estrela MJ (2015) Sea surface temperature and torrential rains in the Valencia region: modelling the role of recharge areas. Nat Hazards Earth Syst Sci Discuss 3(2):1357–1396. doi: 10.5194/nhessd-3-1357-2015 CrossRefGoogle Scholar
  77. Petty GW (1995) The status of satellite-based rainfall estimation over land. Remote Sens Environ 51(1):125–137CrossRefGoogle Scholar
  78. Piriou JM, Redelsperger JL, Geleyn JF, Lafore JP, Guichard F (2007) An approach for convective parameterization with memory: separating microphysics and transport in grid-scale equations. J Atmos Sci 64(11):4127–4139CrossRefGoogle Scholar
  79. Prein AF, Langhans W, Fosser G, Ferrone A, Ban N, Goergen K, Keller M, Tlle M, Gutjahr O, Feser F, Brisson E, Kollet S, Schmidli J, van Lipzig NPM, Leung R (2015) A review on regional convection-permitting climate modeling: demonstrations, prospects, and challenges: convection-permitting climate modeling. Rev Geophys. doi: 10.1002/2014RG000475
  80. Protat A, Pelon J, Grand N, Delville P, Laborie P, Vinson JP, Bouniol D, Bruneau D, Chepfer H, Delanoë J et al (2004) Le projet rali: Combinaison d’un radar et d’un lidar pour l’étude des nuages faiblement précipitants. La Météorol 47. doi: 10.4267/2042/36076
  81. Protat A, Bouniol D, Delanoë J, May PT, Plana-Fattori A, Hasson A, O’Connor E, Görsdorf U, Heymsfield AJ (2009) Assessment of cloudsat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J Atmos Ocean Technol 26:1717. doi: 10.1175/2009JTECHA1246.1 CrossRefGoogle Scholar
  82. Quintana-Seguí P, Le Moigne P, Durand Y, Martin E, Habets F, Baillon M, Canellas C, Franchisteguy L, Morel S (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over France. J Appl Meteorol 47(1):92–107. doi: 10.1175/2007JAMC1636.1 CrossRefGoogle Scholar
  83. Ricard D, Ducrocq V, Auger L (2012) A climatology of the mesoscale environment associated with heavily precipitating events over a northwestern Mediterranean area. J Appl Meteor Climatol 51(3):468–488. doi: 10.1175/JAMC-D-11-017.1 CrossRefGoogle Scholar
  84. Ruti P, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Raznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloche S, Brauch J, Cabos W, Calmanti S, Calvet JC, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde A, Gaertner M, Galan P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jorda G, Lheveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Macias-Moy D, Onol B, Rajkovic B, Ramage K, Sevault F, Sannino G, Struglia MV, Sanna A, Torma C, Vervatis V (2015) Med-cordex initiative for mediterranean climate studies. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-14-00176.1
  85. Rysman JF, Claud C, Chaboureau JP, Delanoë J, Funatsu BM (2015) Severe convection in the mediterranean from microwave observations and a convection-permitting model. Q J R Meteorol Soc n/a–n/a. doi: 10.1002/qj.2611
  86. Rysman JF, Lemaître Y, Moreau E (2016) Spatial and temporal variability of rainfall in the alps-mediterranean euroregion. J Appl Meteorol Climatol. doi: 10.1175/JAMC-D-15-0095.1
  87. Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on large and small scales in regional climate modelling: application to the mediterranean basin. Q J R Meteorol Soc 136(646):170–182CrossRefGoogle Scholar
  88. Sanò P, Casella D, Mugnai A, Schiavon GJ, Smith E, Tripoli G et al (2013) Transitioning from CRD to CDRD in bayesian retrieval of rainfall from satellite passive microwave measurements: Part 1 algorithm description and testing. IEEE Trans Geosci Remote Sens 51(7):4119–4143CrossRefGoogle Scholar
  89. Sanò P, Panegrossi G, Casella D, Di Paola F, Milani L, Mugnai A, Petracca M, Dietrich S (2015) The passive microwave neural network precipitation retrieval (PNPR) algorithm for AMSU/MHS observations: description and application to European case studies. Atmos Meas Techn 8(2):837–857CrossRefGoogle Scholar
  90. Saunders R, Matricardi M, Brunel P (1999) An improved fast radiative transfer model for assimilation of satellite radiance observations. Q J R Meteorol Soc 125(556):1407–1425CrossRefGoogle Scholar
  91. Saunders R, Matricardi M, Brunel P, English S, P B, Rayer P, (2005) RTTOV-8 science and validation report. NWP SAF, Report 41Google Scholar
  92. Saunders R, Hocking J, Rundle D, Rayer P, Matricardi M, Geer A, Lupu C, Brunel P, Vidot J (2013) Rttov-11 science and validation report. Technical report Met Office, ECMWF, KNMI and Météo, FranceGoogle Scholar
  93. Simmons A, Uppala S, Dee D, Kobayashi S (2007) Era-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110(110):25–35Google Scholar
  94. Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda M, Huang XY, Wang W, Powers JG (2008) A description of the advanced research WRF version 3. Technical report, DTIC DocumentGoogle Scholar
  95. Skofronick-Jackson GM, Gasiewski AJ, Wang JR (2002) Influence of microphysical cloud parameterizations on microwave brightness temperatures. IEEE Trans Geosci Remote Sens 40:187–196. doi: 10.1109/36.981360 CrossRefGoogle Scholar
  96. Smirnova TG, Brown JM, Benjamin SG (1997) Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon Weather Rev 125(8):1870–1884CrossRefGoogle Scholar
  97. Smirnova TG, Brown JM, Benjamin SG, Kim D (2000) Parameterization of cold-season processes in the maps land-surface scheme. J Geophys Res Atmos (1984–2012) 105(D3):4077–4086CrossRefGoogle Scholar
  98. Smith EA, Cooper HJ, Xiang X, Mugnai A, Tripoli GJ (1992) Foundations for statistical-physical precipitation retrieval from passive microwave satellite measurements. part i: Brightness-temperature properties of a time-dependent cloud-radiation model. J Appl Meteorol 31(6):506–531CrossRefGoogle Scholar
  99. Sodemann H, Zubler E (2010) Seasonal and inter-annual variability of the moisture sources for alpine precipitation during 1995–2002. Int J Climatol 30(7):947–961Google Scholar
  100. Staelin D, Barrett A, Rosenkranz P, Barath F, Johnson E, Waters J, Wouters A, Lenoir W (1975) The scanning microwave spectrometer (scams) experiment. The Nimbus-6 Users Guide, pp 59–86Google Scholar
  101. Stéfanon M, Drobinski P, DAndrea F, Lebeaupin-Brossier C, Bastin S (2014) Soil moisture-temperature feedbacks at meso-scale during summer heat waves over western Europe. Clim Dyn 42(5–6):1309–1324CrossRefGoogle Scholar
  102. Stephens GL, Kummerow CD (2007) The remote sensing of clouds and precipitation from space: a review. J Atmos Sci 64(11):3742–3765CrossRefGoogle Scholar
  103. Surussavadee C, Staelin DH (2006) Comparison of AMSU millimeter-wave satellite observations, MM5/TBSCAT predicted radiances, and electromagnetic models for hydrometeors. IEEE Trans Geosci Remote Sens 44(10):2667–2678CrossRefGoogle Scholar
  104. Surussavadee C, Staelin DH (2008a) Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather prediction model, part i: Retrieval design. IEEE Trans Geosci Remote Sens 46(1):99–108CrossRefGoogle Scholar
  105. Surussavadee C, Staelin DH (2008b) Global millimeter-wave precipitation retrievals trained with a cloud-resolving numerical weather-prediction model, part ii: Performance evaluation. IEEE Trans Geosci Remote Sens 46(1):109–118CrossRefGoogle Scholar
  106. Susskind J, Rosenfield J, Reuter D, Chahine M (1984) Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N. J Geophys Res Atmos (1984–2012) 89(D3):4677–4697CrossRefGoogle Scholar
  107. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192. doi: 10.1029/2000JD900719 CrossRefGoogle Scholar
  108. Vangasse P, Charlton J, Jarrett M (1996) Characterisation of the advanced microwave sounding unit, AMSU-B. Adv Space Res 17:75–78. doi: 10.1016/0273-1177(95)00451-J CrossRefGoogle Scholar
  109. Wang J, Wilheit T, Chang L (1989) Retrieval of total precipitable water using radiometric measurements near 92 and 183 GHz. J Appl Meteorol 28(2):146–154CrossRefGoogle Scholar
  110. Weng F, Zhao L, Ferraro RR, Poe G, Li X, Grody NC (2003) Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci 38:8068. doi: 10.1029/2002RS002679 CrossRefGoogle Scholar
  111. Wiedner M, Prigent C, Pardo JR, Nuissier O, Chaboureau JP, Pinty JP, Mascart P (2004) Modeling of passive microwave responses in convective situations using outputs from mesoscale models: comparison with TRMM/TMI satellite observations. J Geophys Res 109:D06214. doi: 10.1029/2003JD004280 CrossRefGoogle Scholar
  112. Wu L, Li JLF, Pi CJ, Yu JY, Chen JP (2015) An observationally based evaluation of wrf seasonal simulations over the central and eastern pacific. J Geophys Res Atmos. doi: 10.1002/2015JD023561, 2015JD023561

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jean-François Rysman
    • 1
  • Ségolène Berthou
    • 1
  • Chantal Claud
    • 1
  • Philippe Drobinski
    • 1
  • Jean-Pierre Chaboureau
    • 2
  • Julien Delanoë
    • 3
  1. 1.Laboratoire de Métérology Dynamique, Institut Pierre Simon Laplace CNRS, École PolytechniqueUniversité Paris-SaclayPalaiseauFrance
  2. 2.Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPSToulouseFrance
  3. 3.Laboratoire Atmosphères Milieux Observations Spatiales, IPSL, UVSQ, CNRS, UPMCPalaiseauFrance

Personalised recommendations