Climate Dynamics

, Volume 48, Issue 7–8, pp 2191–2213 | Cite as

Seasonal spatial patterns of projected anthropogenic warming in complex terrain: a modeling study of the western US

  • David E. Rupp
  • Sihan Li
  • Philip W. Mote
  • Karen M. Shell
  • Neil Massey
  • Sarah N. Sparrow
  • David C. H. Wallom
  • Myles R. Allen
Article

Abstract

Changes in near surface air temperature (ΔT) in response to anthropogenic greenhouse gas forcing are expected to show spatial heterogeneity because energy and moisture fluxes are modulated by features of the landscape that are also heterogeneous at these spatial scales. Detecting statistically meaningful heterogeneity requires a combination of high spatial resolution and a large number of simulations. To investigate spatial variability of projected ΔT, we generated regional, high-resolution (25-km horizontal), large ensemble (100 members per year), climate simulations of western United States (US) for the periods 1985–2014 and 2030–2059, the latter with atmospheric constituent concentrations from the Representative Concentration Pathway 4.5. Using the large ensemble, 95 % confidence interval sizes for grid-cell-scale temperature responses were on the order of 0.1 °C, compared to 1 °C from a single ensemble member only. In both winter and spring, the snow-albedo feedback statistically explains roughly half of the spatial variability in ΔT. Simulated decreases in albedo exceed 0.1 in places, with rates of change in T per 0.1 decrease in albedo ranging from 0.3 to 1.4 °C. In summer, ΔT pattern in the northwest US is correlated with the pattern of decreasing precipitation. In all seasons, changing lapse rates in the low-to-middle troposphere may account for up to 0.2 °C differences in warming across the western US. Near the coast, a major control of spatial variation is the differential warming between sea and land.

Keywords

Regional climate modeling Seasonal temperature projections RCP 4.5 Western US 

Supplementary material

382_2016_3200_MOESM1_ESM.pdf (14.2 mb)
Supplementary material 1 (PDF 14552 kb)

References

  1. Barlage M et al (2010) Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains. J Geophys Res 115:D22101. doi:10.1029/2009JD013470 CrossRefGoogle Scholar
  2. Boulanger JP et al (2010) A Europe-South America network for climate change assessment and impact studies. Clim Change 98:307–329. doi:10.1007/s10584-009-9734-8 CrossRefGoogle Scholar
  3. Bradley RS, Keimig FT, Diaz HF (2004) Projected temperature changes along the American cordillera and the planned GCOS network. Geophys Res Lett 31:L16210. doi:10.1029/2004GL020229 CrossRefGoogle Scholar
  4. Christensen JH, Christensen OB (2007) A summary of the PRUDENCE model projections of changes in European climate by the end of the century. Clim Change 81:7–30. doi:10.1007/s10584-006-9210-7 CrossRefGoogle Scholar
  5. Cox PM, Betts RA, Bunton CB, Essery RLH, Rowntree PR, Smith J (1999) The impact of new land surface physics on the GCM simulation of climate and climate sensitivity. Clim Dyn 15:183–203CrossRefGoogle Scholar
  6. Daly C, Halbleib MD, Smith JI, Gibson WP, Doggett MK, Taylor GH, Curtis J, Pasteris PA (2008) Physiographically-sensitive mapping of temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064. doi:10.1002/joc.1688 CrossRefGoogle Scholar
  7. Daly C, Conklin DR, Unsworth MH (2010) Local atmospheric decoupling in complex topography alters climate change impacts. Int J Climatol 30:1857–1864. doi:10.1002/joc.2007 Google Scholar
  8. Deser C, Philips AS, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x CrossRefGoogle Scholar
  9. Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability. J Clim 27:2271–2296. doi:10.1175/JCLI-D-13-00451.1 CrossRefGoogle Scholar
  10. Diffenbaugh NS, Pal JS, Trapp RJ, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci 102:15774–15778. doi:10.1073/pnas.0506042102 CrossRefGoogle Scholar
  11. Diffenbaugh NS, Ashfaq M, Scherer M (2011) Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale ensemble experiment over the continental United States. J Geophys Res Atmos 116:1–16. doi:10.1029/2011JD016458 CrossRefGoogle Scholar
  12. Donlon CJ, Martin M, Stark J, Roberts-Jones J, Fiedler E, Wimmer W (2012) The operational sea surface temperature and sea ice analysis (OSTIA) system. Remote Sens Environ 116:140–158. doi:10.1016/j.rse.2010.10.017 CrossRefGoogle Scholar
  13. Duffy PB, Arritt RW, Coquard J, Gutowski W, Han J, Iorio J, Kim J, Leung LR, Roads J, Zeledon E (2006) Simulations of present and future climates in the western United States with four nested regional climate models. J Clim 19:873–895. doi:10.1175/JCLI3669.1 CrossRefGoogle Scholar
  14. Dulière V, Zhang Y, Salathé EP Jr (2011) Extreme precipitation and temperature over the U.S. Pacific Northwest: a comparison between observations, reanalysis data, and regional models. J Clim 24:1950–1964CrossRefGoogle Scholar
  15. Dulière V, Zhang Y, Salathé EP Jr (2013) Changes in twentieth-century extreme temperature and precipitation over the western United States based on observations and regional climate model simulations. J Clim 26:8556–8575. doi:10.1175/JCLI-D-12-00818.1 CrossRefGoogle Scholar
  16. Giorgi F, Brodeur CS, Bates GT (1994) Regional climate change scenarios over the United States produced with a nested regional climate model. J Clim 7:375–399CrossRefGoogle Scholar
  17. Giorgi F, Hurrell JW, Marinucci MR, Beniston M (1997) Elevation dependency of the surface climate change signal: a model study. J Clim 10:288–296CrossRefGoogle Scholar
  18. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1 CrossRefGoogle Scholar
  19. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. doi:10.1007/s00382-010-0810-6 CrossRefGoogle Scholar
  20. Hostetler SW, Alder JR, Allan AM (2011) Dynamically downscaled climate simulations over North America: Methods, evaluation, and supporting documentation for users: U.S. Geological Survey Open-File Report 2011-1238Google Scholar
  21. Joshi MM, Gregory JM, Webb MJ, Sexton DM, Johns TC (2008) Mechanisms for the land/sea warming contrast exhibited by simulations of climate change. Clim Dyn 5:455–465CrossRefGoogle Scholar
  22. Kotlarski S, Bosshard T, Lüthi D, Pall P, Schär C (2012) Elevation gradients of European climate change in the regional climate model COSMO-CLM. Clim Change 112:189–215. doi:10.1007/s10584-011-0195-5 CrossRefGoogle Scholar
  23. Letcher TW, Minder JR (2015) Characterization of the simulated regional snow albedo feedback using a regional climate model over complex terrain. J Clim 28:7576–7595. doi:10.1175/JCLI-D-15-0166.1 CrossRefGoogle Scholar
  24. Leung LR, Ghan SJ (1999) Pacific Northwest climate sensitivity simulated by a regional climate model driven by a GCM. Part II: 2 × CO2 simulations. J Clim 12:2031–2053CrossRefGoogle Scholar
  25. Leung LR, Qian Y (2003) The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J Hydrometeor 4:1025–1043CrossRefGoogle Scholar
  26. Leung LR, Qian Y, Bian X, Washington WM, Han J, Roads JO (2004) Mid-century ensemble regional climate change scenarios for the western United States. Clim Change 62:75–113. doi:10.1023/B:CLIM.0000013692.50640.55 CrossRefGoogle Scholar
  27. Li S, Mote PW, Rupp DE, Vickers D, Mera R, Allen MR (2015) Evaluation of a regional climate modeling effort for the western United States using a superensemble from weather@home. J Clim 28:7470–7488. doi:10.1175/JCLI-D-14-00808.1 CrossRefGoogle Scholar
  28. Liang X-Z, Pan J, Zhu J, Kunkel KE, Wang JXL, Dai A (2006) Regional climate model downscaling of the U.S. summer climate and future change. J Geophys Res 111:D10108. doi:10.1029/2005JD006685 CrossRefGoogle Scholar
  29. Livneh B, Xia Y, Mitchell KE, Ek MB, Lettenmaier DP (2010) Noah LSM snow model diagnostics and enhancements. J Hydrometeor 11:721–738. doi:10.1175/2009JHM1174.1 CrossRefGoogle Scholar
  30. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141CrossRefGoogle Scholar
  31. Lorenz DJ, DeWeaver ET (2007) Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J Geophys Res 112:D10119. doi:10.1029/2006JD008087 CrossRefGoogle Scholar
  32. Mahoney K, Alexander M, Scott JD, Barsugli J (2013) High-resolution downscaled simulations of warm-season extreme precipitation events in the Colorado Front Range under past and future climates. J Clim 26:8671–8689. doi:10.1175/JCLI-D-12-00744.1 CrossRefGoogle Scholar
  33. Maloney ED et al (2014) North American climate in cmip5 experiments: part iii: assessment of twenty-first-century projections. J Clim 27:2230–2270. doi:10.1175/JCLI-D-13-00273.1 CrossRefGoogle Scholar
  34. Massey N, Jones R, Otto FEL, Aina T, Wilson S, Murphy JM, Hassel D, Yamazaki YH, Allen MR (2014) Weather@home—development and validation of a very large ensemble modelling system for probabilistic event attribution. Q J R Meteorol Soc. doi:10.1002/qj.2455 Google Scholar
  35. Mearns LO et al (2013) Climate change projections of the North American regional climate change assessment program (NARCCAP). Clim Change 120:965–975. doi:10.1007/s10584-013-0831-3 CrossRefGoogle Scholar
  36. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26:6287–6308. doi:10.1175/JCLI-D-12-00572.1 CrossRefGoogle Scholar
  37. Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  38. Mesinger MJ et al (2006) North American Regional Reanalysis. Bull Am Meteorol Soc 90:993–1007. doi:10.1175/BAMS-87-3-343 Google Scholar
  39. Mote PW, Allen MR, Jones RG, Li S, Mera R, Rupp DE, Salahuddin A, Vickers D (2015) Superensemble regional climate modeling for the western US. Bull Am Meteorol Soc. doi:10.1175/BAMS-D-14-00090.1 Google Scholar
  40. O’Brien TA, Sloan LC, Snyder MA (2011) Can ensembles of regional climate model simulations improve results from sensitivity studies? Clim Dyn 37:1111–1118. doi:10.1007/s00382-010-0900-5 CrossRefGoogle Scholar
  41. Parajka J, Dadson S, Lafon T, Essery R (2010) Evaluation of snow cover and depth simulated by a land surface model using detailed regional snow observations from Austria. J Geophys Res Atmos 115:D24117. doi:10.1029/2010JD014086 CrossRefGoogle Scholar
  42. Pavelsky TM, Kapnick S, Hall A (2011) Accumulation and melt dynamics of snowpack from a multiresolution regional climate model in the central Sierra Nevada, California. J Geophys Res Atmos 116:D16115. doi:10.1029/2010JD015479 CrossRefGoogle Scholar
  43. Pavelsky TM, Sobolowski S, Kapnick S, Barnes JB (2012) Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophys Res Lett 39:L18706. doi:10.1029/2012GL052741 CrossRefGoogle Scholar
  44. Pepin N et al (2015) Elevation-dependent warming in mountain regions of the world. Nat Clim Change 5:424–430. doi:10.1038/nclimate2563 CrossRefGoogle Scholar
  45. Plummer DA, Caya D, Frigon A, Côté H, Giguère M, Paquin D, Biner S, Harvey R, de Elia R (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19:3112–3132. doi:10.1175/JCLI3769.1 CrossRefGoogle Scholar
  46. Ramanathan V, Lian MS, Cess RD (1979) Increased atmospheric CO2: zonal and seasonal estimates of the effect on the radiation energy balance and surface temperature. J Geophys Res 84(C8):4949–4958. doi:10.1029/JC084iC08p04949 CrossRefGoogle Scholar
  47. Rasmussen R et al (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J Clim 24:3015–3048. doi:10.1175/2010JCLI3985.1 CrossRefGoogle Scholar
  48. Rupp DE, Abatzoglou JT, Hegewisch KC, Mote PW (2013) Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J Geophys Res Atmos 118:10884–10906. doi:10.1002/jgrd.50843 CrossRefGoogle Scholar
  49. Salathé EP Jr, Steed R, Mass CF, Zahn P (2008) A high-resolution climate model for the United States Pacific Northwest: mesoscale feedbacks and local responses to climate change. J Clim 21:5708–5726CrossRefGoogle Scholar
  50. Salathé EP Jr, Leung LR, Qian Y, Zhang Y (2010) Regional climate model projections for the State of Washington. Clim Change 102:51–75. doi:10.1007/s10584-010-9849-y CrossRefGoogle Scholar
  51. Seager R, Goddard L, Nakamura J, Henderson N, Lee DE (2014a) Dynamical causes of the 2010/11 Texas-Northern Mexican drought. J Hydrometeor 15:39–68. doi:10.1175/JHM-D-13-024.1 CrossRefGoogle Scholar
  52. Seager R, Neelin D, Simpson I, Liu H, Henderson N, Shaw T, Kushnir Y, Ting M, Cook B (2014b) Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J Clim 27:7921–7948. doi:10.1175/JCLI-D-14-00153.1 CrossRefGoogle Scholar
  53. Šeparović L, Alexandru A, Laprise R, Martynov A, Sushama L, Winger K, Tete K, Valin M (2013) Present climate and climate change over North America as simulated by the fifth-generation Canadian regional climate model. Clim Dyn 41:3167–3201. doi:10.1007/s00382-013-1737-5 CrossRefGoogle Scholar
  54. Sheffield J et al (2013) North American climate in CMIP5 experiments. Part 1: evaluation of historical simulations of continental and regional climatology. J Clim 26:9209–9245. doi:10.1175/JCLI-D-12-00592.1 CrossRefGoogle Scholar
  55. Sutton RT, Dong B, Gregory JM (2007) Land/sea warming ratio in response to climate change: IPCC AR4 model results and comparison with observations. Geophys Res Lett 34:L02701. doi:10.1029/2006GL028164 CrossRefGoogle Scholar
  56. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D11-97300094.1 CrossRefGoogle Scholar
  57. van der Linden P, Mitchell JFB (2009) ENSEMBLES: Climate change and its impacts: Summary of research and results from the ENSEMBLES project, technical report, Met Off. Hadley Cent, ExeterGoogle Scholar
  58. Wang J, Kotamarthi VR (2015) High-resolution dynamically downscaled projections of precipitation in the mid and late 21st century over North America. Earth’s Future 3:268–288. doi:10.1002/2015EF000304 CrossRefGoogle Scholar
  59. Wang Z, Zeng X, Decker M (2010) Improving snow processes in the Noah land model. J Geophys Res Solid Earth 115:D20108. doi:10.1029/2009JD013761 CrossRefGoogle Scholar
  60. Wang C, Jones R, Perry M, Johnson C, Clark P (2013) Using an ultrahigh-resolution regional climate model to predict local climatology. Q J R Meteorol Soc 139:1964–1976. doi:10.1002/qj.2081 CrossRefGoogle Scholar
  61. Zhang Y, Dulière V, Mote P, Salathé EP Jr (2009) Evaluation of WRF and HadRM mesoscale climate simulations over the United States Pacific Northwest. J Clim 22:5511–5526CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • David E. Rupp
    • 1
  • Sihan Li
    • 1
  • Philip W. Mote
    • 1
  • Karen M. Shell
    • 2
  • Neil Massey
    • 3
  • Sarah N. Sparrow
    • 4
  • David C. H. Wallom
    • 4
  • Myles R. Allen
    • 3
    • 5
  1. 1.Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA
  2. 2.College of Earth, Ocean, and Atmospheric SciencesOregon State UniversityCorvallisUSA
  3. 3.Environmental Change Institute, School of Geography and the EnvironmentUniversity of OxfordOxfordUK
  4. 4.Oxford e-Research CentreUniversity of OxfordOxfordUK
  5. 5.Atmospheric, Oceanic and Planetary Physics, Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations