Climate Dynamics

, Volume 48, Issue 5–6, pp 2045–2063 | Cite as

Understanding the double peaked El Niño in coupled GCMs

  • Felicity S. GrahamEmail author
  • Andrew T. Wittenberg
  • Jaclyn N. Brown
  • Simon J. Marsland
  • Neil J. Holbrook


Coupled general circulation models (CGCMs) simulate a diverse range of El Niño–Southern Oscillation behaviors. “Double peaked” El Niño events—where two separate centers of positive sea surface temperature (SST) anomalies evolve concurrently in the eastern and western equatorial Pacific—have been evidenced in Coupled Model Intercomparison Project version 5 CGCMs and are without precedent in observations. The characteristic CGCM double peaked El Niño may be mistaken for a central Pacific warming event in El Niño composites, shifted westwards due to the cold tongue bias. In results from the Australian Community Climate and Earth System Simulator coupled model, we find that the western Pacific warm peak of the double peaked El Niño event emerges due to an excessive westward extension of the climatological cold tongue, displacing the region of strong zonal SST gradients towards the west Pacific. A coincident westward shift in the zonal current anomalies reinforces the western peak in SST anomalies, leading to a zonal separation between the warming effect of zonal advection (in the west Pacific) and that of vertical advection (in the east Pacific). Meridional advection and net surface heat fluxes further drive growth of the western Pacific warm peak. Our results demonstrate that understanding historical CGCM El Niño behaviors is a necessary precursor to interpreting projections of future CGCM El Niño behaviors, such as changes in the frequency of eastern Pacific El Niño events, under global warming scenarios.


El Niño evolution Coupled general circulation model CMIP5 Cold tongue bias Climate change 



The ACCESS model is supported by the Australian Government Department of the Environment, the Bureau of Meteorology and CSIRO through the Australian Climate Change Science Program, and the NCI Facility at the ANU. FSG was supported by an Australian Postgraduate Award and a CSIRO Wealth from Oceans scholarship. This research makes a contribution to the ARC Centre of Excellence for Climate System Science. The authors thank two anonymous reviewers for their constructive comments that greatly improved the manuscript.


  1. AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean-atmosphere models: are the current models better? Clim Dyn 27:1–15. doi: 10.1007/s00382-006-0119-7 CrossRefGoogle Scholar
  2. Allan R (2000) El Niño and the Southern Oscillation: multiscale variability, global and regional impacts. Cambridge University Press, CambridgeGoogle Scholar
  3. Allan RJ, Reason CJC, Lindesay JA, Ansell TJ (2003) Protracted ENSO episodes and their impacts in the Indian Ocean region. Deep Sea Res II Top Stud Oceanogr 50(12–13):2331–2347. doi: 10.1016/S0967-0645(03)00059-6 CrossRefGoogle Scholar
  4. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38(5):3–8. doi: 10.1029/2010GL046270 CrossRefGoogle Scholar
  5. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112(C11):1–27. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  6. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42(7–8):1999–2018. doi: 10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  7. Belmadani A, Dewitte B, An SI (2010) ENSO feedbacks and associated time scales of variability in a multimodel ensemble. J Clim 23(12):3181–3204. doi: 10.1175/2010JCLI2830.1 CrossRefGoogle Scholar
  8. Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland Ø, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian earth system model, NorESM1-M—part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720. doi: 10.5194/GMD-6-687-2013 CrossRefGoogle Scholar
  9. Bi D, Dix M, Marsland SJ, O’Farrell S, Rashid HA, Uotila P, Hirst AC, Kowalczyk E, Golebiewski M, Sullivan A, Yan H, Hannah N, Franklin C, Sun Z, Vohralik P, Watterson I, Zhou X, Fiedler R, Collier M, Ma Y, Noonan J, Stevens L, Uhe P, Zhu H, Griffies SM, Hill R, Harris C, Puri K (2013a) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64Google Scholar
  10. Bi D, Marsland SJ, Uotila P, O’Farrell S, Fiedler R, Sullivan A, Griffies SM, Zhou X, Hirst AC (2013b) ACCESS-OM: the ocean and sea-ice core of the ACCESS coupled model. Aust Meteorol Oceanogr J 63:213–232Google Scholar
  11. Boucharel J, Dewitte B, du Penhoat Y, Garel B, Yeh SW, Kug JS (2011) ENSO nonlinearity in a warming climate. Clim Dyn 37:2045–2065. doi: 10.1007/s00382-011-1119-9 CrossRefGoogle Scholar
  12. Brown JN, Langlais C, Maes C (2013) Zonal structure and variability of the western Pacific dynamic warm pool edge in CMIP5. Clim Dyn 42(11–12):3061–3076. doi: 10.1007/s00382-013-1931-5 Google Scholar
  13. Capotondi A (2013) ENSO diversity in the NCAR CCSM4 climate model. J Geophys Res 118:1–16. doi: 10.1002/jgrc.20335 CrossRefGoogle Scholar
  14. Capotondi A, Wittenberg AT, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298. doi: 10.1016/j.ocemod.2006.02.004 CrossRefGoogle Scholar
  15. Capotondi A, Ham YG, Wittenberg AT, Kug JS (2015a) Climate model biases and El Niño Southern Oscillation (ENSO) simulation. US CLIVAR Var 13(1):21–25Google Scholar
  16. Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese BS, Guilyardi E, Jin FF, Karnauskas KB, Kirtman BP, Lee T, Schneider N, Xue Y, Yeh SW (2015b) Understanding ENSO diversity. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-13-00117.1 Google Scholar
  17. Choi J, An SI, Yeh SW (2012) Decadal amplitude modulation of two types of ENSO and its relationship with the mean state. Clim Dyn 38(11–12):2631–2644. doi: 10.1007/s00382-011-1186-y CrossRefGoogle Scholar
  18. Choi K, Vecchi GA, Wittenberg AT (2013) ENSO transition, duration and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J Clim 26:9462–9476. doi: 10.1175/JCLI-D-13-00045.1 CrossRefGoogle Scholar
  19. Choi KY, Vecchi GA, Wittenberg AT (2015) Nonlinear zonal wind response to ENSO in the CMIP5 models: roles of the zonal and meridional shift of the ITCZ/SPCZ and the simulated climatological precipitation. J Clim 28:8556–8573. doi: 10.1175/JCLI-D-15-0211.1 CrossRefGoogle Scholar
  20. Clarke AJ, Wang J, Van Gorder S (2000) A simple warm-pool displacement ENSO model. J Phys Oceanogr 30:1679–1691CrossRefGoogle Scholar
  21. Collins M, An SI, Ganachaud A, Guilyardi E, Jin FF, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi GA, Wittenberg AT (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–367. doi: 10.1038/NGEO868 CrossRefGoogle Scholar
  22. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire a, Woodward S (2011) Development and evaluation of an Earth-System model—HadGEM2. Geosci Model Dev 4:1051–1075. doi: 10.5194/gmd-4-1051-2011 CrossRefGoogle Scholar
  23. Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and Pacific decadal variability in the Community Climate System Model version 4. J Clim 25:2622–2651. doi: 10.1175/JCLI-D-11-00301.1 CrossRefGoogle Scholar
  24. DiNezio PN, Kirtman BP, Clement AC, Lee SK, Vecchi GA, Wittenberg AT (2012) Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J Clim 24:7399–7420. doi: 10.1175/JCLI-D-11-00494.1 CrossRefGoogle Scholar
  25. Dix M, Vohralik P, Bi D, Rashid H, Marsland S, OFarrell S, Uotila P, Hirst T, Kowalczyk E, Sullivan A, Yan H, Franklin C, Sun Z, Watterson I, Collier M, Noonan J, Stevens L, Uhe P, Puri K (2014) The ACCESS coupled model: documentation of core CMIP5 simulations and initial results. Aust Meteorol Oceanogr J 63:83–99Google Scholar
  26. Donner LJ, Wyman BL, Hemler RS, Horowitz LW, Ming Y, Zhao M, Golaz JC, Ginoux P, Lin SJ, Schwarzkopf MD, Austin J, Alaka G, Cooke WF, Delworth TL, Freidenreich SM, Gordon CT, Griffies SM, Held IM, Hurlin WJ, Sa Klein, Knutson TR, Langenhorst AR, Lee HC, Lin Y, Magi BI, Malyshev SL, Milly PCD, Naik V, Nath MJ, Pincus R, Ploshay JJ, Ramaswamy V, Seman CJ, Shevliakova E, Sirutis JJ, Stern WF, Stouffer RJ, Wilson RJ, Winton M, Wittenberg AT, Zeng F (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24(13):3484–3519. doi: 10.1175/2011JCLI3955.1 CrossRefGoogle Scholar
  27. Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165. doi: 10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  28. Dunne JP, John JG, Adcroft AJ, Griffies SM, Hallberg RW, Shevliakova E, Stouffer RJ, Cooke W, Dunne KA, Harrison MJ, Krasting JP, Malyshev SL, Milly PCD, Phillipps PJ, Sentman LT, Samuels BL, Spelman MJ, Winton M, Wittenberg AT, Zadeh N (2012) GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: physical formulation and baseline simulation characteristics. J Clim 25(19):6646–6665. doi: 10.1175/JCLI-D-11-00560.1 CrossRefGoogle Scholar
  29. Fogli PG, Manzini E, Vichi M, Alessandri A, Patara L, Gualdi S, Scoccimarro E, Masina S, Navarra A (2009) INGV—CMCC Carbon (ICC): a carbon cycle earthsystem model. Technical report April, Centro Euro-Mediterraneo Per I CambiamentiClimaticiGoogle Scholar
  30. Gebbie G, Eisenman I, Wittenberg AT, Tziperman E (2007) Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J Atmos Sci 64:3281–3295. doi: 10.1175/JAS4029.1 CrossRefGoogle Scholar
  31. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24(19):4973–4991. doi: 10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  32. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA). J Geophys Res. doi: 10.1029/2010JC006695 Google Scholar
  33. Gillett NP, Arora VK, Flato GM, Scinocca JF, Von Salzen K (2012) Improved constraints on 21st-century warming derived using 160 years of temperature observations. Geophys Res Lett 39(1):1–5. doi: 10.1029/2011GL050226 CrossRefGoogle Scholar
  34. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597. doi: 10.1002/jame.20038 CrossRefGoogle Scholar
  35. Graham FS, Brown JN, Langlais C, Marsland SJ, Wittenberg AT, Holbrook NJ (2014) Effectiveness of the Bjerknes stability index in representing ocean dynamics. Clim Dyn. doi: 10.1007/s00382-014-2062-3 Google Scholar
  36. Graham FS, Brown JN, Wittenberg AT, Holbrook NJ (2015) Reassessing conceptual models of ENSO. J Clim 28:9121–9142. doi: 10.1175/JCLI-D-14-00812.1 CrossRefGoogle Scholar
  37. Griffies SM (2009) Elements of MOM4p1: GFDL Ocean Group. Technical report 6, NOAA Geophysical Fluid Dynamics LaboratoryGoogle Scholar
  38. Griffies SM, Winton M, Donner LJ, Horowitz LW, M DS, Farneti R, Gnanadesikan A, Hurlin WJ, Lee HC, Palter JB, Samuels BL, Wittenberg AT, Wyman B, Yin J, Zadeh N (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim 24(13):3520–3544. doi: 10.1175/2077JCLI3964.1 CrossRefGoogle Scholar
  39. Griffies SM, Winton M, Samuels BL, Danabasoglu G, Yeager SG, Marsland SJ, Drange H, Bentsen M (2012) Datasets and protocol for the CLIVAR WGOMD Coordinated Ocean-Sea Ice Reference Experiments (COREs). WCRP Report No. 21/2012, p 21Google Scholar
  40. Guilyardi E, Wittenberg AT, Fedorov AV, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Niño in ocean-atmosphere general circulation models. Bull Am Meteorol Soc 90:325–340. doi: 10.1175/2008BAMS2387.1 CrossRefGoogle Scholar
  41. Guilyardi E, Cai W, Collins M, Fedorov AV, Jin FF, Kumar A, Sun DZ, Wittenberg AT (2012) New strategies for evaluating ENSO processes in climate models. Bull Am Meteorol Soc 93:235–238. doi: 10.1175/BAMS-D-11-00106.1 CrossRefGoogle Scholar
  42. Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg AT (2013) A first look at ENSO in CMIP5. Clivar Exch 17(1):29–32Google Scholar
  43. Guilyardi E, Wittenberg AT, Balmaseda M, Cai W, Collins M, McPhaden MJ, Watanabe M, Yeh SW (2015) ENSO in a changing climate–meeting summary of the 4th CLIVAR workshop on the evaluation of ENSO processes in climate models. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-15-00287.1 Google Scholar
  44. Ham YG, Kug JS (2012) How well do current climate models simulate two types of El Niño? Clim Dyn 39:383–398. doi: 10.1007/s00382-011-1157-3 CrossRefGoogle Scholar
  45. Holbrook NJ, Li J, Collins M, Di Lorenzo E, Jin FF, Knutson TR, Latif M, Li C, Power SB, Huang R, Wu G (2014) Decadal climate variability and cross-scale interactions: ICCL 2013 Expert Assessment Workshop. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-13-00201.1 Google Scholar
  46. Huang BH, Xue Y, Zhang D, Kumar A, McPhaden MJ (2010) The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual timescales. J Clim 23:4901–4925CrossRefGoogle Scholar
  47. Huang BH, Xue Y, Wang H, Wang W, Kumar A (2011) Mixed layer heat budget of the El Niño in NCEP climate forecast system. Clim Dyn. doi: 10.1007/s00382-011-1111-4 Google Scholar
  48. Ingleby B, Huddleston M (2007) Quality control of ocean temperature and salinity profiles—historical and real-time data. J Mar Syst 65:158–175. doi: 10.1016/j.jmarsys.2005.11.019 CrossRefGoogle Scholar
  49. Jia L, Yang X, Vecchi GA, Gudgel RG, Delworth TL, Rosati A, Stern WF, Wittenberg AT, Krishnamurthy L, Zhang S, Msadek R, Kapnick S, Underwood SD, Zeng F, Anderson WG, Balaji V, Dixon KW (2015) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28:2044–2062. doi: 10.1175/JCLI-D-14-00112.1 CrossRefGoogle Scholar
  50. Jin FF (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  51. Jin FF (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847CrossRefGoogle Scholar
  52. Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26(13):4816–4827. doi: 10.1175/JCLI-D-12-00649.1 CrossRefGoogle Scholar
  53. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  54. Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22(3):615–632. doi: 10.1175/2008JCLI2309.1 CrossRefGoogle Scholar
  55. Kim ST, Jin FF (2011) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn 36:1609–1627. doi: 10.1007/s00382-010-0872-5 CrossRefGoogle Scholar
  56. Kim ST, Cai W, Jin FF, Yu JY (2014) ENSO stability in coupled climate models and its association with mean state. Clim Dyn 42(11–12):3313–3321. doi: 10.1007/s00382-013-1833-6 CrossRefGoogle Scholar
  57. Krishnamurthy L, Vecchi GA, Msadek R, Wittenberg AT, Delworth TL, Zeng F (2015) The seasonality of the Great Plains Low-Level Jet and ENSO relationship. J Clim 28:4825–4544. doi: 10.1175/JCLI-D-14-00590.1 CrossRefGoogle Scholar
  58. Krishnamurthy L, Vecchi GA, Msadek R, Murakami H, Wittenberg AT, Zeng F (2016) Impact of strong ENSO on regional tropical cyclone activity in a high-resolution climate model in the North Pacific and North Atlantic. J Clim 29:2375–2394. doi: 10.1175/JCLI-D-0468.1 CrossRefGoogle Scholar
  59. Kug JS, Choi J, An SI, Jin FF, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239. doi: 10.1175/2009JCLI3293.1 CrossRefGoogle Scholar
  60. Kumar BP, Vialard J, Lengaigne M, Murty VSN, McPhaden MJ (2012) TropFlux: air-sea fluxes for the global tropical oceans—description and evaluation. Clim Dyn 38(7–8):1521–1543CrossRefGoogle Scholar
  61. Latif M, Semenov VA, Park W (2015) Super El Niños in response to global warming in a climate model. Clim Dyn 132:489–500. doi: 10.1007/s10584-015-1439-6 Google Scholar
  62. Lee SK, DiNezio PN, Chung ES, Yeh SW, Wittenberg AT, Wang C (2014) Spring persistence, transition and resurgence of El Niño. Geophys Res Lett 41(23):8578–8585. doi: 10.1002/2014GL062484 CrossRefGoogle Scholar
  63. Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37(L14):603. doi: 10.1029/2010GL0440007 Google Scholar
  64. Leloup J, Lengaigne M, Boulanger JP (2008) Twentieth century ENSO characteristics in the IPCC database. Clim Dyn 30:277–291CrossRefGoogle Scholar
  65. Lloyd J, Guilyardi E, Weller H, Slingo J (2009) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos Sci Lett 10:170–176CrossRefGoogle Scholar
  66. Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: the shortwave flux feedback. J Clim 25(12):4275–4293. doi: 10.1175/JCLI-D-11-00178.1 CrossRefGoogle Scholar
  67. Long MC, Lindsay K, Peacock S, Moore JK, Doney SC (2013) Twentieth-century oceanic carbon uptake and storage in CESM1(BGC). J Clim 26(18):6775–6800. doi: 10.1175/JCLI-D-12-00184.s1 CrossRefGoogle Scholar
  68. Martin GM, Bellouin N, Collins WJ, Culverweil ID, Halloran P, Hardiman S, Hinton TJ, Jones CD, McLaren A, O’Connor F, Rodriguez J, Woodward S et al (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev Discuss 4:723–757. doi: 10.5194/gmd-4-723-2011 CrossRefGoogle Scholar
  69. Meehl GA, Teng H, Branstator G (2006) Future changes of El Niño in two coupled climate models. Clim Dyn 26(6):549–566. doi: 10.1007/s00382-005-0098-0 CrossRefGoogle Scholar
  70. Meehl GA, Washington WM, Arblaster JM, Hu A, Teng H, Kay JE, Gettelman A, Lawrence DM, Sanderson BM, Strand WG (2013) Climate change projections in CESM1(CAM5) compared to CCSM4. J Clim 26(17):6287–6308. doi: 10.1175/JCLI-D-12-00572.1 CrossRefGoogle Scholar
  71. Miller RL (2014) CMIP5 historical simulations (1850–2012) with GISSModelE2. J Adv Model Earth Syst. doi: 10.1002/2013MS000266 Google Scholar
  72. Ogata T, Xie SP, Wittenberg AT, Sun DZ (2013) Interdecadal amplitude modulation of El Niño/Southern Oscillation and its impacts on tropical Pacific decadal variability. J Clim 26:7280–7297. doi: 10.1175/JCLI-D-12-00415.1 CrossRefGoogle Scholar
  73. Picaut J, Ioualalen M, Menkes C, Delcroix T, McPhaden MJ (1996) Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 274(5292):1486–1489CrossRefGoogle Scholar
  74. Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277(5326):663–666. doi: 10.1126/science.277.5326.663 CrossRefGoogle Scholar
  75. Qiao F, Song Z, Bao Y, Song Y, Shu Q, Huang C, Zhao W (2013) Development and evaluation of an Earth System Model with surface gravity waves. J Geophys Res Oceans 118(9):4514–4524. doi: 10.1002/jgrc.20327 CrossRefGoogle Scholar
  76. Rashid HA, Hirst AC (2015) Investigating the mechanisms of seasonal ENSO phase locking bias in the ACCESS coupled model. Clim Dyn. doi: 10.1007/s00382-015-2633-y Google Scholar
  77. Rashid HA, Hirst AC, Dix M (2013a) Atmospheric circulation features in the ACCESS model simulations for CMIP5: historical simulation and future projections. Aust Meteorol Oceanogr J 63:145–160Google Scholar
  78. Rashid HA, Sullivan A, Hirst AC, Bi D, Marsland SJ (2013b) Evaluation of El Niño–Southern Oscillation in the ACCESS coupled model simulations for CMIP5. Aust Meteorol Oceanogr J 63(1):161–180Google Scholar
  79. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  80. Rotstayn LD, Jeffrey SJ, Collier MA, Dravitzki SM, Hirst AC, Syktus JI, Wong KK (2012) Aerosol- and greenhouse gas-induced changes in summer rainfall and circulation in the Australasian region: A study using single-forcing climate simulations. Atmos Chem Phys 12(14):6377–6404. doi: 10.5194/acp-12-6377-2012 CrossRefGoogle Scholar
  81. Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R, Canuto V, Chen Yh, Cheng Y, Clune TL, Genio AD, Fainchtein RD, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, Legrande AN, Lerner J, Lo KK, Matthews EE, Menon S, Miller RL, Oinas V, Oloso AO (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6:141–184. doi: 10.1002/2013MS000265 CrossRefGoogle Scholar
  82. Smith NR (1995) An improved system for tropical ocean subsurface temperature analyses. J Atmos Ocean Technol 12:850–870CrossRefGoogle Scholar
  83. Taschetto AS, Sen Gupta A, Jourdain NC, Santoso A, Ummenhofer CC, England MH (2014) Cold tongue and warm pool ENSO events in CMIP5: mean state and future projections. J Clim 27:2861–2885. doi: 10.1175/JCLI-D-13-00437.1 CrossRefGoogle Scholar
  84. Taylor KE, Stouffer RJ, Meehl GA (2012) Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  85. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78(12):2771–2777CrossRefGoogle Scholar
  86. Vecchi GA, Wittenberg AT (2010) El Niño and our future climate: where do we stand? Wiley Interdiscip Rev Clim Change 1:260–270. doi: 10.1002/wcc.33 Google Scholar
  87. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006a) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature. doi: 10.1038/nature04744 Google Scholar
  88. Vecchi GA, Wittenberg AT, Rosati A (2006b) Reassessing the role of stochastic forcing in the 1997–8 El Niño. Geophys Res Lett 33(L01):706. doi: 10.1029/2005GL024738 Google Scholar
  89. Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part I: role of salinity in the physics of the western Pacific fresh pool. J Phys Oceanogr 28:1071–1088CrossRefGoogle Scholar
  90. Vialard J, Menkes C, Boulanger JP, Delecluse P, Guilyardi E, McPhaden MJ, Madec G (2001) A model study of oceanic mechanisms affecting equatorial Pacific sea surface temperature during the 1997–98 El Niño. J Phys Oceanogr 31(7):1649–1675CrossRefGoogle Scholar
  91. Voldoire A, Sanchez-Gomez E, Salas y, Melia D, Decharme B, Cassou C, Senesi S, Valcke S, Beau I, Alias A, Chevallier M, Deque M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi: 10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  92. Watanabe M, Suzuki T, O’Ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23(23):6312–6335. doi: 10.1175/2010JCLI3679.1 CrossRefGoogle Scholar
  93. Watanabe M, Kug JS, Jin FF, Collins M, Ohba M, Wittenberg AT (2012) Uncertainty in the ENSO amplitude change from the past to the future. Geophys Res Lett. doi: 10.1029/2012LG053305 Google Scholar
  94. Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM: model description and basic results of CMIP5-20c3m experiments. Geosci Model Develop Discuss 4(2):1063–1128. doi: 10.5194/gmdd-4-1063-2011 CrossRefGoogle Scholar
  95. Wittenberg AT (2004) Extended wind stress analyses for ENSO. J Clim 17:2526–2540. doi: 10.1175/1520-0442(2004)017<2526:EWSAFE>2.0.CO;2 CrossRefGoogle Scholar
  96. Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophys Res Lett 36(L12):702. doi: 10.1175/JCLI3631.1 Google Scholar
  97. Wittenberg AT (2015) Low-frequency variations of ENSO. US CLIVAR Var 13(1):26–31Google Scholar
  98. Wittenberg AT, Rosati A, Lau NC, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722. doi: 10.1175/JCLI3631.1 CrossRefGoogle Scholar
  99. Wittenberg AT, Rosati A, Delworth TL, Vecchi GA, Zeng F (2014) ENSO modulation: is it decadally predictable? J Clim 27:2667–2681. doi: 10.1175/JCLI-D-13-00577.1 CrossRefGoogle Scholar
  100. Wu T, Yu R, Zhang F, Wang Z, Dong M, Wang L, Jin X, Chen D, Li L (2010) The Beijing Climate Center atmospheric general circulation model: description and its performance for the present-day climate. Clim Dyn 34(1):123–147. doi: 10.1007/s00382-008-0487-2 CrossRefGoogle Scholar
  101. Yang X, Vecchi GA, Gudgel RG, Delworth TL, Zhang S, Rosati A, Jia L, Stern WF, Wittenberg AT, Kapnick S, Msadek R, Underwood SD, Zeng F, Anderson W, Balaji V (2015) Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J Clim 28:3592–3611. doi: 10.1175/JCLI-D-14-00517.1 CrossRefGoogle Scholar
  102. Yeh SW, Park YG, Kirtman BP (2006) ENSO amplitude changes in climate change commitment to atmospheric \(\text{ CO }_2\) doubling. Geophys Res Lett. doi: 10.1029/2005GL025653 Google Scholar
  103. Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514. doi: 10.1038/nature08316 CrossRefGoogle Scholar
  104. Yeh SW, Kug JS, An SI (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia Pac J Atmos Sci 50(1):69–81. doi: 10.1007/s13143-014-0028-3 CrossRefGoogle Scholar
  105. Yu JY, Kim ST (2013) Identifying the types of major El Niño events since 1870. Int J Climatol 33(8):2105–2112. doi: 10.1002/joc.3575 CrossRefGoogle Scholar
  106. Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Koshiro T, Ose T, Kitoh A (2012) A new global climate model of the Meterological Research Institute: MRI-CGCM3. J Meteorol Soc Jpn 90A:23–64. doi: 10.2151/jmsj.2012-A02 CrossRefGoogle Scholar
  107. Zhang Q, Kumar A, Xue Y, Wang W, Jin FF (2007) Analysis of the ENSO cycle in the NCEP coupled forecast model. J Clim 40:1265–1284CrossRefGoogle Scholar
  108. Zhang W, Vecchi GA, Murakami H, Delworth TL, Wittenberg AT, Rosati A, Underwood SD, Anderson W, Harris L, Gudgel R, Lin SJ, Villarini G, Chen JH (2016) Improved simulation of tropical cyclone responses to ENSO in the western north Pacific in the high-resolution GFDL HiFLOR coupled climate model. J Clim 29:1391–1415. doi: 10.1175/JCLI-D-15-0475.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Felicity S. Graham
    • 1
    Email author
  • Andrew T. Wittenberg
    • 2
  • Jaclyn N. Brown
    • 3
  • Simon J. Marsland
    • 4
  • Neil J. Holbrook
    • 1
    • 5
  1. 1.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  2. 2.National Oceanic and Atmospheric AdministrationGeophysical Fluid Dynamics LaboratoryPrincetonUSA
  3. 3.CSIRO, Oceans and AtmosphereHobartAustralia
  4. 4.CSIRO, Oceans and AtmosphereAspendaleAustralia
  5. 5.ARC Centre of Excellence for Climate System ScienceHobartAustralia

Personalised recommendations