Climate Dynamics

, Volume 48, Issue 5–6, pp 1911–1930 | Cite as

Seasonal variations in the barrier layer in the South China Sea: characteristics, mechanisms and impact of warming

  • Lili Zeng
  • Dongxiao Wang


A new observational dataset, the South China Sea Physical Oceanographic Dataset 2014, is examined to investigate the seasonal characteristics, formation mechanisms, and warming effects of the barrier layer (BL) in the South China Sea (SCS). Statistical analysis reveals that the BL is thicker and occurs more frequently during summer and early autumn, while in winter it often coexists with temperature inversions. The formation mechanisms are discussed from the perspective of the controlling regime and the net turbulent energy required for BL evolution. In the initial stage (March–May), the BL is absent due to weak mixing, scarce rainfall and surface warming. In the formation and maintenance stage (June–September), the BL grows in summer and persists into the transition season. The BLs can be classified into three regimes: the flux regime (in the Luzon Strait), the combined regime (in the eastern basin) and the wind regime (southeast of Vietnam). In the attenuation stage (October–February), associated with the winter monsoon, the BL mainly occurs in the combined regime (along the path of western boundary current) and the flux regime (in the southeast corner). The characteristics and generation mechanisms of the temperature inversions near the south Chinese coast, east of Vietnam, and in the Gulf of Thailand are also discussed. Our analysis further demonstrates that the BL has a significant warming effect on upper ocean temperature and heat content in the SCS.


Barrier layer South China Sea Seasonal variability Mixed layer salinity budget Temperature inversion Upper ocean heat content 



Highly detailed comments and excellent revision suggestions from two anonymous reviews are gratefully acknowledged. Numerous freely available data sets were used: OAFlux evaporation and heat flux (, TRMM 3B43 precipitation (, QuikSCAT wind stress (, AVISO surface currents (, gridded SCSPOD14 dataset [, and]. This study was supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (XDA11010203), the National Natural Science Foundation of China (41206011, 41476014, 41521005, 41476012, 41476011, 41406038), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the Major National Scientific Instrument and Equipment Development Project (2012YQ12003910). L. Zeng is also sponsored by the Pearl River S&T Nova Program of Guangzhou, the Open Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ1601), and the 100 Talents Program of Chinese Academy of Sciences.


  1. Agarwal N, Sharma R, Parekh A, Basu B, Sarkar A, Agarwal V (2012) Argo observations of barrier layer in the tropical Indian Ocean. Adv Space Res 50:642–654CrossRefGoogle Scholar
  2. Anderson SP, Weller RA, Lucks RB (1996) Surface buoyancy forcing and the ML of the western Pacific warm pool observations and 1D model results. J. Climate 9:3056–3085CrossRefGoogle Scholar
  3. Ando K, McPhaden MJ (1997) Variability of surface layer hydrography in the tropical Pacific Ocean. J Geophys Res 102(C10):23063–23078CrossRefGoogle Scholar
  4. Balaguru K (2011) Barrier layers of the Atlantic Warm pool: Formation mechanism and influence on weather and climate. Ph.D. thesis, Tex. A&M University, College StationGoogle Scholar
  5. Bosc C, Delcroix T, Maes C (2009) Barrier layer variability in the western Pacific warm pool from 2000 to 2007. J Geophys Res 114:C06023. doi: 10.1029/2008JC005187 CrossRefGoogle Scholar
  6. Cai S, Long X, Wang S (2007) A model study of the summer Southeast Vietnam Offshore Current in the southern South China Sea. Cont Shelf Res 27(18):2357–2372CrossRefGoogle Scholar
  7. Chen G, Gan J, Xie Q, Chu X, Wang D, Hou Y (2012) Eddy heat and salt transports in the South China Sea and their seasonal modulations. J Geophys Res (1978–2012) 117(C5):78–91Google Scholar
  8. Chu PC, Chang CP (1997) South China Sea warm pool in boreal spring. Adv Atmos Sci 14:195–206CrossRefGoogle Scholar
  9. Chu PC, Edmons NL, Fan CW (1999) Dynamical mechanisms for the South China Sea seasonal circulation and thermohaline variabilities. J Phys Oceanogr 29:2971–2989CrossRefGoogle Scholar
  10. Cronin MF, McPhaden MJ (2002) Barrier layer formation during westerly wind bursts. J Geophys Res (1978–2012) 107(C12):1–9Google Scholar
  11. de Boyer Montégut C, Mignot J, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 1. General description. J Geophys Res 112:C06011. doi: 10.1029/2006JC003953 Google Scholar
  12. Du Y, Wang D, Shi P, Guo P, Chen J (2004) Seasonal variation of the barrier layer in the South China Sea and its relationship to the sea surface flux. China J Atmos Sci 28:101–111Google Scholar
  13. Felton CS, Subrahmanyam B, Murty VSN, Shriver JF (2014) Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity. J Geophys Res 119(7):4200–4213CrossRefGoogle Scholar
  14. Foltz GR, McPhaden MJ (2009) Impact of barrier layer thickness on SST in the central tropical North Atlantic. J Clim 22:285–299CrossRefGoogle Scholar
  15. Fujii Y, Kamachi M, Matsumoto S, Ishizaki S (2012) Barrier layer and relevant variability of the salinity field in the equatorial Pacific estimated in an ocean reanalysis experiment. Pure appl Geophys 169:579–594CrossRefGoogle Scholar
  16. Girishkumar MS, Ravichandran M, McPhaden MJ, Rao RR (2011) Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. J Geophys Res 116:C03009. doi: 10.1029/2010JC006657 CrossRefGoogle Scholar
  17. Girishkumar MS, Ravichandran M, McPhaden MJ (2013) Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006–2007 and 2007–2008 in the Bay of Bengal. J Geophys Res Oceans 118:2426–2437CrossRefGoogle Scholar
  18. Grosse J, Bombar D, Doan HN, Nguyen LN, Voss M (2010) The Mekong River plume fuels nitrogen fixation and determines phytoplankton species distribution in the South China Sea during low and high discharge season. Limnol Oceanogr 55(4):1668–1680CrossRefGoogle Scholar
  19. Guan B (1986) Evidence for a counter-wind current in winter off the southeast coast of China. Chin J Oceanol Limnol 4(4):319–332CrossRefGoogle Scholar
  20. Hao J, Chen Y, Wang F (2010) Temperature inversion in China seas. J Geophys Res (1978–2012) 115(C12):93–102Google Scholar
  21. Hao J, Chen Y, Wang F, Lin P (2012) Seasonal thermocline in the China Seas and northwestern Pacific Ocean. J Geophys Res 117:C02022. doi: 10.1029/2011JC007246 Google Scholar
  22. He Z, Wang D (2007) Surface pattern of the South China Sea western boundary current in winter. Adv Geosci 12:1–8CrossRefGoogle Scholar
  23. Hu J, Kawamura H, Hong H, Qi Y (2000) A review on the currents in the South China Sea: seasonal circulation, South China Sea warm current and Kuroshio intrusion. J Oceanogr 56(6):607–624CrossRefGoogle Scholar
  24. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J Hydrometeorol 8(1):38–55CrossRefGoogle Scholar
  25. Jaffrés JBD (2013) Mixed layer depth seasonality within the Coral Sea Based on Argo Data. PLoS ONE 8(4):e60985. doi: 10.1371/journal.pone.0060985 CrossRefGoogle Scholar
  26. Kara AB, Rochford PA, Hurlburt HE (2000) An optimal definition for ocean mixed layer depth. J Geophys Res 105:16803–16821CrossRefGoogle Scholar
  27. Kim J-W (1976) A generalized bulk model of the oceanic mixed-layer. J Phys Oceanogr 6:686–695CrossRefGoogle Scholar
  28. Liu WT, Xie X (1999) Space-based observations of the seasonal changes of South Asian monsoons and oceanic response. Geophys Res Lett 26:1473–1476CrossRefGoogle Scholar
  29. Liu WT, Xie X, Polito PS, Xie SP, Hashizume H (2000) Atmospheric manifestation of tropical instability waves observed by QuikSCAT and tropical rain measuring mission. Geophys Res Lett 27:2545–2548CrossRefGoogle Scholar
  30. Lombardo CP, Gregg MC (1989) Similarity scaling of viscous and thermal dissipation in a convecting surface boundary layer. J Geophys Res 94:6273–6284CrossRefGoogle Scholar
  31. Lozovatsky I, Figueroa M, Roget E, Fernando HJS, Shapovalov S (2005) Observations and scaling of the upper mixed layer in the North Atlantic. J Geophys Res 110:C05013. doi: 10.1029/2004JC002708 CrossRefGoogle Scholar
  32. Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific Ocean. J Geophys Res 96:3343–3357CrossRefGoogle Scholar
  33. Maes C, Picaut J, Belamari S (2002) Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophys Res Lett 29(24):2206. doi: 10.1029/2002GL016029 CrossRefGoogle Scholar
  34. Maes C, Picaut J, Belamari S (2005) Importance of the salinity barrier layer for the buildup of El Niño. J Clim 18(1):104–118CrossRefGoogle Scholar
  35. Marshall J, Schott F (1999) Open-ocean convection: observations, theory, and models. Rev Geophys 37(1):1–64CrossRefGoogle Scholar
  36. Masson S, Delecluse P, Boulanger JP, Menkes C (2002) A model study of the seasonal variability and formation mechanisms of the barrier layer in the eastern equatorial Indian Ocean. J Geophys Res 107:8017. doi: 10.1029/2001JC000832 CrossRefGoogle Scholar
  37. Mignot J, de Boyer Montegut C, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 2. Tropical and subtropical areas. J Geophys Res 112:C10010. doi: 10.1029/2006JC003954 CrossRefGoogle Scholar
  38. Mignot J, de Boyer Montegut C, Tomczak M (2009) On the porosity of barrier layers. Ocean Sci 5:379–387CrossRefGoogle Scholar
  39. Mignot J, Lazar A, Lacarra M (2012) On the formation of barrier layers and associated vertical temperature inversions: a focus on the northwestern tropical Atlantic. J Geophys Res 117(C2):138–144CrossRefGoogle Scholar
  40. Miller JR (1976) The salinity effect in a mixed layer ocean model. J Phys Oceanogr 6:29–35CrossRefGoogle Scholar
  41. Pan A, Wan X, Xu J, Guo X, Li L (2006) Barrier layer in the northeastern South China Sea and its formation mechanism. China Sci Bull 51:472–479CrossRefGoogle Scholar
  42. Parampil SR, Gera A, Ravichandran M, Sengupta D (2010) Intraseasonal response of mixed layer temperature and salinity in the Bay of Bengal to heat and freshwater flux. J Geophys Res 115:700–712CrossRefGoogle Scholar
  43. Qu T, Du Y, Gan J, Wang D (2007) Mean seasonal cycle of isothermal depth in the South China Sea. J Geophys Res 112:117–128CrossRefGoogle Scholar
  44. Ren L, Speer K, Chassignet EP (2011) The mixed layer salinity budget and sea ice in the Southern Ocean. J Geophys Res 116(C8):239–255CrossRefGoogle Scholar
  45. Sato K, Suga T, Hanawa K (2004) Barrier layer in the North Pacific subtropical gyre. Geophys Res Lett 31(5):325–341Google Scholar
  46. Shetye SR (1986) A model study of the seasonal cycle of the Arabian Sea surface temperature. J Mar Res 44:521–542CrossRefGoogle Scholar
  47. Su J (2004) Overview of the South China Sea circulation and its influence on the coastal physical oceanography outside the Pearl River Estuary. Cont Shelf Res 24(16):1745–1760CrossRefGoogle Scholar
  48. Thadathil P, Gopalakrishna VV, Muraleedharan PM, Reddy GV, Araligidad N, Shenoy S (2002) Surface layer temperature inversion in the Bay of Bengal. Deep Sea Res Part I 49:1801–1818CrossRefGoogle Scholar
  49. Thadathil P, Muraleedharan PM, Rao RR, Somayajulu YK, Reddy GV, Revichandran C (2007) Observed seasonal variability of barrier layer in the Bay of Bengal. J Geophys Res 112(C2):97–108CrossRefGoogle Scholar
  50. Thadathil P, Muraleedharan PM, Somayajulu YK, Gopalakrishna VV, Reddy GV (2008) Seasonal variability of the observed barrier layer in the Arabian Sea. J Phys Oceanogr 38:624–638CrossRefGoogle Scholar
  51. Vialard J, Delecluse P (1998) An OGCM study for the TOGA decade. Part II: Barrier-layer formation and variability. J Phys Oceanogr 28:1089–1106CrossRefGoogle Scholar
  52. Wang W, Wang C (2006) Formation and decay of the spring warm pool in the South China Sea. Geophys Res Lett 33(2):87–94CrossRefGoogle Scholar
  53. Wang G, Chen D, Su J (2006) Generation and life cycle of the dipole in the South China Sea summer circulation. J Geophys Res 111(C6):161–173Google Scholar
  54. Wang D, Hong B, Gan J, Xu H (2010) Numerical investigation on propulsion of the counter-wind current in the northern South China Sea in winter. Deep Sea Res I 57:1206–1221CrossRefGoogle Scholar
  55. Wang Q, Wang Y, Hong B, Zhou W, Wang D (2011) Different roles of Ekman pumping in the west and east segments of the South China Sea warm current. Acta Oceanol Sin 30(3):1–13CrossRefGoogle Scholar
  56. Wang D, Liu Q, Xie Q, He Z, Zhuang W, Shu Y, Xiao X, Hong B, Wu X, Sui D (2013) Progress of regional oceanography study associated with western boundary current in the South China Sea. Chin Sci Bull 58(11):1205–1215CrossRefGoogle Scholar
  57. Xie SP, Xie Q, Wang D, Liu WT (2003) Summer upwelling in the South China Sea and its role in regional climate variations. J Geophys Res 108(C8):343–367CrossRefGoogle Scholar
  58. Xie SP, Xu H, Saji NH, Wang Y, Liu WT (2006) Role of Narrow mountains in large-scale organization of Asian Monsoon convection. J Clim 19(14):3420–3429CrossRefGoogle Scholar
  59. Xu XZ, Qiu Z, Chen HC (1982) The general descriptions of the horizontal circulation in the South China Sea. In: Proceedings of the 1980 symposium on hydrometeorology, Chinese Society for Oceanology and Limnology, Science Press, Beijing, pp 137–145 (in Chinese)Google Scholar
  60. Xue H, Chai F, Pettigrew NR, Xu D, Shi M, Xu J (2004) Kuroshio intrusion and the circulation in the South China Sea. J Geophys Res 109:C02017. doi: 10.1029/2002JC001724 Google Scholar
  61. Yang J (2007) An oceanic current against the wind: how does Taiwan Island steer warm water into the east China Sea? J Phys Oceanogr 37:2563–2569CrossRefGoogle Scholar
  62. Yu LS, Weller RA (2007) Objectively analyzed air–sea heat fluxes for the global ice-free ocean (1981–2005). Bull Am Meteorol Soc 88:527–539CrossRefGoogle Scholar
  63. Zeng L, Du Y, Xie SP, Wang D (2009) Barrier layer in the South China Sea during summer 2000. Dyn Atmos Oceans 47:38–54CrossRefGoogle Scholar
  64. Zeng L, Liu WT, Xue H, Xiu P, Wang D (2014) Freshening in the South China Sea during 2012 revealed by Aquarius and in situ data. J Geophys Res 119:8296–8314CrossRefGoogle Scholar
  65. Zeng L, Wang D, Chen J, Wang W, Chen R (2016) SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014. Sci Data 3:160029. doi: 10.1038/sdata.2016.29 CrossRefGoogle Scholar
  66. Zhang X, Clarke AJ (2015) Observations of interannual equatorial freshwater jets in the western pacific. J Phys Oceanogr 45(11):2848–2865CrossRefGoogle Scholar
  67. Zheng F, Zhang RH, Zhu J (2014) Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: a diagnostic analysis from Argo. Adv Atmos Sci 31(3):532–542CrossRefGoogle Scholar
  68. Zhuang W, Xie SP, Wang D, Taguchi B, Aiki H, Sasaki H (2010) Intraseasonal variability in sea surface height over the South China Sea. J Geophys Res 115(C4):357–366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Tropical Oceanography, South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhouChina

Personalised recommendations