Climate Dynamics

, Volume 48, Issue 5–6, pp 1855–1872 | Cite as

Data-driven prediction strategies for low-frequency patterns of North Pacific climate variability

  • Darin Comeau
  • Zhizhen Zhao
  • Dimitrios Giannakis
  • Andrew J. Majda


The North Pacific exhibits patterns of low-frequency variability on the intra-annual to decadal time scales, which manifest themselves in both model data and the observational record, and prediction of such low-frequency modes of variability is of great interest to the community. While parametric models, such as stationary and non-stationary autoregressive models, possibly including external factors, may perform well in a data-fitting setting, they may perform poorly in a prediction setting. Ensemble analog forecasting, which relies on the historical record to provide estimates of the future based on past trajectories of those states similar to the initial state of interest, provides a promising, nonparametric approach to forecasting that makes no assumptions on the underlying dynamics or its statistics. We apply such forecasting to low-frequency modes of variability for the North Pacific sea surface temperature and sea ice concentration fields extracted through Nonlinear Laplacian Spectral Analysis, an algorithm which produces clean time-scale separation from data without pre-filtering. We find such methods may outperform parametric methods and simple persistence with increased predictive skill, and are more skillful when initialized in an active phase, rather than a quiescent phase. We also apply these methods to the predict integrated sea ice extent anomalies in the North Pacific from both models and observations, and find an increase of predictive skill over the persistence forecast by about 2 months.


North Pacific climate variability PDO Predictability Dimension reduction 



The research of Andrew Majda and Dimitrios Giannakis is partially supported by ONR MURI Grant 25-74200-F7112. Darin Comeau is supported as a postdoctoral fellow through this Grant. The research of Dimitrios Giannakis is also partially supported by ONR DRI Grant N00014-14-0150. The authors thank two anonymous reviewers for their helpful comments and suggestions in evaluating this manuscript.


  1. Alessandrini S, Delle Monache L, Sperati S, Nissen J (2015) A novel application of an analog ensemble for short-term wind power forecasting. Renew Energy 76:768–781CrossRefGoogle Scholar
  2. Alexander MA, Deser C, Timlin MS (1999) The reemergence of SST anomalies in the North Pacific Ocean. J Clim 12(8):2419–2433CrossRefGoogle Scholar
  3. Berry T, Cressman JR, Gregurić-Ferenček Z, Sauer T (2013) Time-scale separation from diffusion-mapped delay coordinates. SIAM J Appl Dyn Syst 12(2):618–649CrossRefGoogle Scholar
  4. Blanchard-Wrigglesworth E, Bitz CM (2014) Characteristics of Arctic sea-ice thickness variability in GCMs. J Clim 27(21):8244–8258CrossRefGoogle Scholar
  5. Blanchard-Wrigglesworth E, Armour KC, Bitz CM, DeWeaver E (2011a) Persistence and inherent predictability of Arctic sea ice in a GCM ensemble and observations. J Clim 24(1):231–250CrossRefGoogle Scholar
  6. Blanchard-Wrigglesworth E, Bitz C, Holland M (2011b) Influence of initial conditions and climate forcing on predicting Arctic sea ice. Geophys Res Lett 38(18):L18503CrossRefGoogle Scholar
  7. Branstator G, Teng H, Meehl GA, Kimoto M, Knight JR, Latif M, Rosati A (2012) Systematic estimates of initial-value decadal predictability for six AOGCMs. J Clim 25(6):1827–1846CrossRefGoogle Scholar
  8. Broomhead DS, King GP (1986) Extracting qualitative dynamics from experimental data. Phys D 20(2–3):217–236CrossRefGoogle Scholar
  9. Bushuk M, Giannakis D, Majda AJ (2014) Reemergence mechanisms for North Pacific sea ice revealed through nonlinear Laplacian spectral analysis*. J Clim 27(16):6265–6287CrossRefGoogle Scholar
  10. Chen N, Majda AJ (2015a) Predicting the cloud patterns for the boreal summer intraseasonal oscillation through a low-order stochastic model. Math Clim Weather Forecast 1(1)Google Scholar
  11. Chen N, Majda AJ (2015b) Predicting the real-time multivariate Madden–Julian oscillation index through a low-order nonlinear stochastic model. Mon Weather Rev 143(6):2148–2169CrossRefGoogle Scholar
  12. Chen N, Majda A, Giannakis D (2014) Predicting the cloud patterns of the Madden–Julian oscillation through a low-order nonlinear stochastic model. Geophys Res Lett 41(15):5612–5619CrossRefGoogle Scholar
  13. Chiang JC, Vimont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability*. J Clim 17(21):4143–4158CrossRefGoogle Scholar
  14. Coifman RR, Lafon S (2006a) Diffusion maps. Appl Comput Harmon Anal 21(1):5–30CrossRefGoogle Scholar
  15. Coifman RR, Lafon S (2006b) Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions. Appl Comput Harmon Anal 21(1):31–52CrossRefGoogle Scholar
  16. Collins M (2002) Climate predictability on interannual to decadal time scales: the initial value problem. Clim Dyn 19(8):671–692CrossRefGoogle Scholar
  17. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS, Carton JA, Chang P, Doney SC, Hack JJ, Henderson TB et al (2006) The community climate system model version 3 (CCSM3). J Clim 19(11):2122–2143CrossRefGoogle Scholar
  18. Day J, Tietsche S, Hawkins E (2014) Pan-Arctic and regional sea ice predictability: initialization month dependence. J Clim 27(12):4371–4390CrossRefGoogle Scholar
  19. Deyle ER, Sugihara G (2011) Generalized theorems for nonlinear state space reconstruction. PLoS One 6(3):e18,295CrossRefGoogle Scholar
  20. Di Lorenzo E, Schneider N, Cobb K, Franks P, Chhak K, Miller A, McWilliams J, Bograd S, Arango H, Curchitser E et al. (2008) North Pacific Gyre Oscillation links ocean climate and ecosystem change. Geophys Res Lett 35(8):L08607CrossRefGoogle Scholar
  21. Di Lorenzo E, Liguori G, Schneider N, Furtado J, Anderson B, Alexander M (2015) Enso and meridional modes: a null hypothesis for pacific climate variability. Geophys Res Lett 42(21):9440–9448CrossRefGoogle Scholar
  22. Drosdowsky W (1994) Analog (nonlinear) forecasts of the Southern Oscillation index time series. Weather Forecast 9(1):78–84CrossRefGoogle Scholar
  23. Frankignoul C, Hasselmann K (1977) Stochastic climate models, part II application to sea-surface temperature anomalies and thermocline variability. Tellus 29(4):289–305CrossRefGoogle Scholar
  24. Franzke C, Crommelin D, Fischer A, Majda AJ (2008) A hidden Markov model perspective on regimes and metastability in atmospheric flows. J Clim 21(8):1740–1757CrossRefGoogle Scholar
  25. Franzke C, Horenko I, Majda AJ, Klein R (2009) Systematic metastable atmospheric regime identification in an AGCM. J Atmos Sci 66(7):1997–2012CrossRefGoogle Scholar
  26. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M et al (2011) The community climate system model version 4. J Clim 24(19):4973–4991CrossRefGoogle Scholar
  27. Ghil M, Allen M, Dettinger M, Ide K, Kondrashov D, Mann M, Robertson AW, Saunders A, Tian Y, Varadi F et al (2002) Advanced spectral methods for climatic time series. Rev Geophys 40(1):3CrossRefGoogle Scholar
  28. Giannakis D, Majda AJ (2012a) Comparing low-frequency and intermittent variability in comprehensive climate models through nonlinear Laplacian spectral analysis. Geophys Res Lett 39(10):L10710CrossRefGoogle Scholar
  29. Giannakis D, Majda AJ (2012b) Limits of predictability in the North Pacific sector of a comprehensive climate model. Geophys Res Lett 39(24):L24602CrossRefGoogle Scholar
  30. Giannakis D, Majda AJ (2012c) Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proc Nat Acad Sci 109(7):2222–2227CrossRefGoogle Scholar
  31. Giannakis D, Majda AJ (2013) Nonlinear Laplacian spectral analysis: capturing intermittent and low-frequency spatiotemporal patterns in high-dimensional data. Stat Anal Data Min 6(3):180–194CrossRefGoogle Scholar
  32. Giannakis D, Majda AJ (2014) Data-driven methods for dynamical systems: quantifying predictability and extracting spatiotemporal patterns. In: Mathematical and computational modeling: with applications in engineering and the natural and social sciences, p 288Google Scholar
  33. Hasselmann K (1976) Stochastic climate models part I. Theory. Tellus 28(6):473–485CrossRefGoogle Scholar
  34. Holland MM, Bitz CM, Hunke EC, Lipscomb WH, Schramm JL (2006) Influence of the sea ice thickness distribution on polar climate in CCSM3. J Clim 19(11):2398–2414CrossRefGoogle Scholar
  35. Holland MM, Bailey DA, Briegleb BP, Light B, Hunke E (2012) Improved sea ice shortwave radiation physics in CCSM4: the impact of melt ponds and aerosols on arctic sea ice*. J Clim 25(5):1413–1430CrossRefGoogle Scholar
  36. Horenko I (2010a) On clustering of non-stationary meteorological time series. Dyn Atmos Oceans 49(2):164–187CrossRefGoogle Scholar
  37. Horenko I (2010b) On the identification of nonstationary factor models and their application to atmospheric data analysis. J Atmos Sci 67(5):1559–1574CrossRefGoogle Scholar
  38. Horenko I (2011a) Nonstationarity in multifactor models of discrete jump processes, memory, and application to cloud modeling. J Atmos Sci 68(7):1493–1506CrossRefGoogle Scholar
  39. Horenko I (2011b) On analysis of nonstationary categorical data time series: dynamical dimension reduction, model selection, and applications to computational sociology. Multiscale Model Simul 9(4):1700–1726CrossRefGoogle Scholar
  40. Hunke E, Lipscomb W (2008) CICE: the Los Alamos sea ice model, documentation and software, version 4.0, Los Alamos National Laboratory tech. rep. Tech. rep., LA-CC-06-012Google Scholar
  41. Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26(4):636–646CrossRefGoogle Scholar
  42. Majda AJ, Harlim J (2013) Physics constrained nonlinear regression models for time series. Nonlinearity 26(1):201CrossRefGoogle Scholar
  43. Majda AJ, Yuan Y (2012) Fundamental limitations of ad hoc linear and quadratic multi-level regression models for physical systems. Discrete Contin Dyn Syst B 17(4):1333–1363CrossRefGoogle Scholar
  44. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1079CrossRefGoogle Scholar
  45. Metzner P, Putzig L, Horenko I (2012) Analysis of persistent nonstationary time series and applications. Commun Appl Math Comput Sci 7(2):175–229CrossRefGoogle Scholar
  46. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16(23):3853–3857CrossRefGoogle Scholar
  47. Nyström EJ (1930) Über die praktische auflösung von integralgleichungen mit anwendungen auf randwertaufgaben. Acta Math 54(1):185–204CrossRefGoogle Scholar
  48. Overland J, Rodionov S, Minobe S, Bond N (2008) North Pacific regime shifts: definitions, issues and recent transitions. Prog Oceanogr 77(2):92–102CrossRefGoogle Scholar
  49. Overland JE, Percival DB, Mofjeld HO (2006) Regime shifts and red noise in the North Pacific. Deep Sea Res Part I 53(4):582–588CrossRefGoogle Scholar
  50. Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712CrossRefGoogle Scholar
  51. Rabin N, Coifman RR (2012) Heterogeneous datasets representation and learning using diffusion maps and Laplacian pyramids. In: SDM, SIAM, pp 189–199Google Scholar
  52. Rayner N, Parker DE, Horton E, Folland C, Alexander L, Rowell D, Kent E, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res Atmos 108(D14)Google Scholar
  53. Robinson JC (2005) A topological delay embedding theorem for infinite-dimensional dynamical systems. Nonlinearity 18(5):2135CrossRefGoogle Scholar
  54. Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65(3–4):579–616CrossRefGoogle Scholar
  55. Smith R, Jones P, Briegleb B, Bryan F, Danabasoglu G, Dennis J, Dukowicz J, Eden C, Fox-Kemper B, Gent P et al (2010) The Parallel Ocean Program (POP) reference manual: ocean component of the Community Climate System Model (CCSM). Los Alamos National Laboratory, LAUR-10-01853Google Scholar
  56. Takens F (1981) Detecting strange attractors in turbulence. Springer, BerlinCrossRefGoogle Scholar
  57. Tietsche S, Day J, Guemas V, Hurlin W, Keeley S, Matei D, Msadek R, Collins M, Hawkins E (2014) Seasonal to interannual Arctic sea ice predictability in current global climate models. Geophys Res Lett 41(3):1035–1043CrossRefGoogle Scholar
  58. Xavier PK, Goswami BN (2007) An analog method for real-time forecasting of summer monsoon subseasonal variability. Mon Weather Rev 135(12):4149–4160CrossRefGoogle Scholar
  59. Zhao Z, Giannakis D (2014) Analog forecasting with dynamics-adapted kernels. arXiv preprint arXiv:14123831

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Darin Comeau
    • 1
  • Zhizhen Zhao
    • 1
  • Dimitrios Giannakis
    • 1
  • Andrew J. Majda
    • 1
  1. 1.Center for Atmosphere Ocean Science, Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations