Climate Dynamics

, Volume 48, Issue 5–6, pp 1769–1778 | Cite as

Decreasing monsoon precipitation in southwest China during the last 240 years associated with the warming of tropical ocean

  • Liangcheng TanEmail author
  • Yanjun Cai
  • Zhisheng An
  • Hai Cheng
  • Chuan-Chou Shen
  • Yongli Gao
  • R. Lawrence Edwards


Based on an absolutely dated stalagmite δ18O record from Yunnan province, China, we reconstructed monsoon precipitation variations in southwest China since 1760 AD with a resolution of about 2 years. Combining the speleothem δ18O and observed rainfall records, we find an overall decreasing trend in monsoon precipitation in this region and suggest that the recent drought in 2009–2012 AD has been the driest since 1760 AD. Our speleothem record is consistent with the monsoon precipitation records reconstructed from tree rings in the Nepal Himalaya and southeastern Tibetan Plateau. However, it is anti-correlated with a speleothem record from central India, which confirms the observed anti-phase variations of Indian monsoon precipitation with moistures from the Bay of Bengal and Arabian Sea on multi-decadal to centennial timescales during historical time. The long-term warming of tropical ocean may have caused the decrease of the land-sea thermal gradient and the amount of moisture transported from the Bay of Bengal, which may reduce precipitations in southwest China during the last 240 years. On decadal scale, El Nińo-like conditions of tropical Pacific sea surface temperature may cause drought in this region. Climate model simulations suggest El Niño-like conditions exist in tropical Pacific under global warming scenarios. As a result, it is crucial to have adaptive strategies to overcome future declines in precipitation and/or drought events in southwest China.


Drought Southwest China Tropical SST El Niño Stalagmite 



The final version of the manuscript benefited for constructive suggestions from three anonymous reviewers. We gratefully acknowledge the National Key Basic Research Program of China (2013CB955902), National Natural Science Foundation of China (41372192; 41230524), West Light Foundation of Chinese Academy of Sciences, and Youth Innovation Promotion Association of Chinese Academy of Sciences (2012295) for funding this research. C.-C. Shen received financial support from MOST (104-2119-M-002-003). H. Cheng and R. L. Edwards received financial support from the U.S. NSF (EAR-0908792 and EAR-1211299).


  1. An S, Kim JW, Im S, Kim B, Park J (2012) Recent and future sea surface temperature trends in tropical Pacific warm pool and cold tongue regions. Clim Dyn 39:1373–1383. doi: 10.1007/s00382-011-1129-7 CrossRefGoogle Scholar
  2. An W, Liu X, Leavitt SW, Xu G, Zeng X, Wang W, Qin D, Ren J (2013) Relative humidity history on the Batang–Litang Plateau of western China since 1755 reconstructed from tree-ring δ18O and δD data. Clim Dyn 42:2639–2654. doi: 10.1007/s00382-013-1937-z CrossRefGoogle Scholar
  3. Anderson DM, Overpeck JT, Gupta AK (2002) Increase in the Asian southwest monsoon during the past four centuries. Science 297:596–599. doi: 10.1126/science.1072881 CrossRefGoogle Scholar
  4. Barriopedro D, Gouveia CM, Trigo RM, Wang L (2012) The 2009/10 drought in China: possible causes and impacts on vegetation. J Hydrometeorol 13:1251–1267. doi: 10.1175/JHM-D-11-074.1 CrossRefGoogle Scholar
  5. Bayr T, Dommenget D, Martin T, Power SB (2014) The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Clim Dyn 43:2747–2763. doi: 10.1007/s00382-014-2091-y CrossRefGoogle Scholar
  6. Berkelhammer M, Sinha A, Mudelsee M, Cheng H, Yoshimura K, Biswas J (2014) On the low-frequency component of the ENSO-Indian monsoon relationship: a paired proxy perspective. Clim Past 10:733–744. doi: 10.5194/cp-10-733-2014 CrossRefGoogle Scholar
  7. Bi Y, Xu J, Gebrekirstos A, Guo L, Zhao M, Liang E, Yang X (2015) Assessing drought variability since 1650 AD from tree-rings on the Jade Dragon Snow Mountain, southwest China. Int J Climatol 35:4057–4065. doi: 10.1002/joc.4264 CrossRefGoogle Scholar
  8. Breitenbach SF, Adkins JF, Meyer H, Marwan N, Kumar KK, Haug GH (2010) Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in southern Meghalaya, NE India. Earth Planet Sci Lett 292:212–220. doi: 10.1016/j.epsl.2010.01.038 CrossRefGoogle Scholar
  9. Buckley BM, Palakit K, Duangsathaporn K, Sanguantham P, Prasomsin P (2007) Decadal scale droughts over northwestern Thailand over the past 448 years: links to the tropical Pacific and Indian Ocean sectors. Clim Dyn 29:63–71. doi: 10.1007/s00382-007-0225-1 CrossRefGoogle Scholar
  10. Cai Y, An Z, Cheng H, Edwards RL, Kelly MJ, Liu W, Wang X, Shen CC (2006) High-resolution absolute-dated Indian Monsoon record between 53 and 36 ka from Xiaobailong Cave, southwestern China. Geology 34:621–624. doi: 10.1130/G22567.1 CrossRefGoogle Scholar
  11. Cai Y, Tan L, Cheng H, An Z, Edwards RL, Kelly MJ, Kong X, Wang X (2010) The variation of summer monsoon precipitation in central China since the last deglaciation. Earth Planet Sci Lett 291:21–31. doi: 10.1016/j.epsl.2009.12.039 CrossRefGoogle Scholar
  12. Cai Y, Fung IY, Edwards RL, An Z, Cheng H, Lee JE, Tan L, Shen CC, Wang X, Day JA (2015) Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc Natl Acad Sci 112:2954–2959. doi: 10.1073/pnas.1424035112 CrossRefGoogle Scholar
  13. Chen TC, Yoon JH (2000) Interannual variation in Indochina summer monsoon rainfall: possible mechanism. J Clim 13:1979–1986. doi: 10.1175/1520-0442(2000)013<1979:IVIISM>2.0.CO;2 CrossRefGoogle Scholar
  14. Cheng H, Edwards RL, Shen CC, Polyak VJ, Asmerom Y, Woodhead J, Hellstrom J, Wang Y, Kong X, Spötl C (2013) Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet Sci Lett 371:82–91. doi: 10.1016/j.epsl.2013.04.006 CrossRefGoogle Scholar
  15. Cherchi A, Navarra A (2013) Influence of ENSO and of the Indian Ocean dipole on the Indian summer monsoon variability. Clim Dyn 41:81–103. doi: 10.1007/s00382-012-1602-y CrossRefGoogle Scholar
  16. Chinese Academy of Meteorological Sciences (CAMS) (1981) Yearly charts of drought/flood in China for the last 500-year period. SinoMaps Press, BeijingGoogle Scholar
  17. Cook ER, D’Arrigo RD, Anchukaitis KJ (2008) ENSO reconstructions from long tree-ring chronologies: Unifying the differences? Special workshop on “Reconciling ENSO Chronologies for the Past 500 Years”, Moorea, French PolynesiaGoogle Scholar
  18. D’Arrigo R, Cook ER, Wilson RJ, Allan R, Mann ME (2005) On the variability of ENSO over the past six centuries. Geophys Res Lett 32:L03711. doi: 10.1029/2004GL022055 Google Scholar
  19. Edwards RL, Chen JH, Wasserburg GJ (1987) 238U–234U–230Th–232Th systematic and the precise measurement of time over the past 500,000 years. Earth Planet Sci Lett 81:175–192. doi: 10.1016/0012-821X(87)90154-3 CrossRefGoogle Scholar
  20. Fan ZX, Braeuning A, Cao KF (2008) Tree-ring based drought reconstruction in the central Hengduan Mountains (China) since A.D. 1655. Int J Climatol 28:1879–1887. doi: 10.1002/joc.1689 CrossRefGoogle Scholar
  21. Gadgil S (2003) The Indian monsoon and its variability. Annu Rev Earth Planet Sci 31:429–467. doi: 10.1146/ CrossRefGoogle Scholar
  22. Ge Q, Hao Z, Zheng J, Shao X (2013) Temperature changes over the past 2000 year in China and comparison with the Northern Hemisphere. Clim Past 9:1153–1160. doi: 10.5194/cp-9-1153-2013 CrossRefGoogle Scholar
  23. Griebinger J, Brauning A, Helle G, Thomas A, Schleser G (2011) Late Holocene Asian summer monsoon variability reflected by δ18O in tree-rings from Tibetan junipers. Geophys Res Lett 38:L03701. doi: 10.1029/2010GL045988 Google Scholar
  24. Guhathakurta P, Rajeevan M (2008) Trends in the rainfall pattern over India. Int J Climatol 28:1453–1469. doi: 10.1002/joc.1640 CrossRefGoogle Scholar
  25. He J, Zhang M, Wang P, Wang S, Wang X (2011) Climate characteristics of the extreme drought events in southwest China during recent 50 years. Acta Geogr Sin 66:1179–1190Google Scholar
  26. Hendy CH (1971) The isotope geochemistry of speleothems: I. The calculation of the effects of different modes of formation on the isotopic composition of speleothems and their applicability as paleoclimate indicators. Geochim Cosmochim Acta 35:801–824. doi: 10.1016/0016-7037(71)90127-X CrossRefGoogle Scholar
  27. Huang H, Li Q, Gao Y, Zhong A, Chen H, Li J (2011) Diagnosis of the severe drought in autumn/winter 2009–2010 in Yunnan province. Trop Geogr 31:28–31Google Scholar
  28. Huang R, Liu Y, Wang L, Wang L (2012) Analyses of the cause of severe drought occurring in southwest China from the fall of 2009 to the spring of 2010. Chin J Atmos Sci 36:443–457. doi: 10.3878/j.issn.1006-9895.2011.11101 Google Scholar
  29. Jaffey AHK, Flynn F, Glendenin LE, Bentley WC, Essling AM (1971) Precision measurement of half-lives and specific activities of 235U and 238U. Phys Rev C 4:1889–1906. doi: 10.1103/PhysRevC.4.1889 CrossRefGoogle Scholar
  30. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. B Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  31. Kennett DJ, Breitenbach SF, Aquino VV, Asmerom Y, Awe J, Baldini JU, Bartlein P, Culleton BJ, Ebert C, Jazwa C (2012) Development and disintegration of Maya political systems in response to climate change. Science 338:788–791. doi: 10.1126/science.1226299 CrossRefGoogle Scholar
  32. Kim ST, O’Neil JR, Hillaire-Marcel C, Mucci A (2007) Oxygen isotope fractionation between synthetic aragonite and water: influence of temperature and Mg2+ concentration. Geochim Cosmochim Acta 71:4704–4715. doi: 10.1016/j.gca.2007.04.019 CrossRefGoogle Scholar
  33. Konwar M, Parekh A, Goswami B (2012) Dynamics of east-west asymmetry of Indian summer monsoon rainfall trends in recent decades. Geophys Res Lett. doi: 10.1029/2012GL052018 Google Scholar
  34. Kucharski F, Bracco A, Yoo J, Molteni F (2007) Low-frequency variability of the Indian monsoon-ENSO relationship and the tropical Atlantic: The “weakening”of the 1980 s and 1990s. J Clim 20:4255–4266. doi: 10.1175/JCLI4254.1 CrossRefGoogle Scholar
  35. Kumar KK, Rajagopalan B, Cane MA (1999) On the weakening relationship between the Indian monsoon and ENSO. Science 284:2156–2159. doi: 10.1126/science.284.5423.2156 CrossRefGoogle Scholar
  36. Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Nino. Science 314:115–119. doi: 10.1126/science.1131152 CrossRefGoogle Scholar
  37. Li Y, Xu H, Liu D (2009) Feature of the extermely severe drought in the east of Southwest China and anomalies of atmospheric circulation in summer 2006. Acta Meteorol Sin 67:122–132. doi: 10.1007/s13351-011-0025-8 Google Scholar
  38. Liu J, Wang B, Cane MA, Yim SY, Lee JY (2013) Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature 493:656–659. doi: 10.1038/nature11784 CrossRefGoogle Scholar
  39. Liu ZY, Wen XY, Brady EC, Otto-Bliesner B, Yu G, Lu HY, Cheng H, Wang YJ, Zheng WP, Ding YH, Edwards RL, Cheng J, Liu W, Yang H (2014) Chinese cave records and the East Asia summer monsoon. Quat Sci Rev 83:115–128. doi: 10.1016/j.quascirev.2013.10.021 CrossRefGoogle Scholar
  40. Mann ME, Gille EP, Bradley RS, Hughes MK, Overpeck JT, Keimig FT, Gross WS (2000) Global temperature patterns in past centuries: an interactive presentation. Earth Interact 4:1–29. doi: 10.1175/1087-3562(2000)0042.3.CO;2 CrossRefGoogle Scholar
  41. McCabe GJ, Markstrom SL (2007) A monthly water-balance driven by a graphical user interface. US Geological Survey Open-File Report 2007–1088, p 6Google Scholar
  42. Medina-Elizalde M, Rohling EJ (2012) Collapse of classic Maya civilization related to modest reduction in precipitation. Science 335:956–959. doi: 10.1126/science.1216629 CrossRefGoogle Scholar
  43. Mishra V, Smoliak BV, Lettenmaier DP, Wallace JM (2012) A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc Natl Acad Sci 109:7213–7217. doi: 10.1073/pnas.1119150109 CrossRefGoogle Scholar
  44. Park HS, Chiang JC, Lintner BR, Zhang GJ (2010) The delayed effect of major El Nino events on Indian monsoon rainfall. J Clim 23:932–946. doi: 10.1175/2009JCLI2916.1 CrossRefGoogle Scholar
  45. Puranik SS, Ray K, Sen P, Kumar PP (2014) Impact of cross-equatorial meridional transport on the performance of the southwest monsoon over India. Curr Sci India 107:1006–1013Google Scholar
  46. Ramanathan V, Chung C, Kim D, Bettge T, Buja L, Kiehl JT, Washington WM, Fu Q, Sikka DR, Wild M (2005) Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle. Proc Natl Acad Sci 102:5326–5333. doi: 10.1073/pnas.0500656102 CrossRefGoogle Scholar
  47. Ratnam JV, Behera SK, Masumoto Y, Takahashi K, Yamagata T (2010) Pacific Ocean origin for the 2009 Indian summer monsoon failure. Geophys Res Lett 37:L07807. doi: 10.1029/2010GL042798 CrossRefGoogle Scholar
  48. Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Nino/Southern Oscillation. Mon Weather Rev 115:1606–1626. doi: 10.1175/1520-0493(1987)115<1606:GARSPP>2.0.CO;2 CrossRefGoogle Scholar
  49. Sano M, Ramesh R, Sheshshayee MS, Sukumar R (2012) Increasing aridity over the past 223 years in the Nepal Himalaya inferred from a tree-ring δ18O chronology. Holocene 22:809–817. doi: 10.1177/0959683611430338 CrossRefGoogle Scholar
  50. Shen CC, Cheng H, Edwards RL, Moran SB, Edmonds HN, Hoff JA, Thomas RB (2003) Measurement of attogram quantities of 231Pa in dissolved and particulate fractions of seawater by isotope dilution thermal ionization mass spectroscopy. Anal Chem 75:1075–1079. doi: 10.1021/ac026247r CrossRefGoogle Scholar
  51. Shi F, Li J, Wilson RJS (2014) A tree-ring reconstruction of the South Asian summer monsoon index over the past millennium. Sci Rep 4:6739. doi: 10.1038/srep06739 CrossRefGoogle Scholar
  52. Sinha A, Berkelhammer M, Stott L, Mudelsee M, Cheng H, Biswas J (2011) The leading mode of Indian summer monsoon precipitation variability during the last millennium. Geophys Res Lett 38:L15703. doi: 10.1029/2011GL047713 CrossRefGoogle Scholar
  53. Sinha A, Kathayat G, Cheng H, Breitenbach SFM, Mudelsee M, Berkelhammer M, Du Y, Biswas J, Edwards LR (2015) Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nat Commun 6:6309. doi: 10.1038/ncomms7309 CrossRefGoogle Scholar
  54. Stahle DW, Cleaveland M, Therrell M, Gay D, D’arrigo R, Krusic P, Cook E, Allan R, Cole J, Dunbar R (1998) Experimental dendroclimatic reconstruction of the Southern Oscillation. B Am Meteorol Soc 79:2137–2152. doi: 10.1175/1520-0477 CrossRefGoogle Scholar
  55. Tan M (2014) Circulation effect: response of precipitation δ18O to the ENSO cycle in monsoon regions of China. Clim Dyn 42:1067–1077. doi: 10.1007/s00382-013-1732-x CrossRefGoogle Scholar
  56. Tan L, Cai Y, An Z, Edwards RL, Cheng H, Shen CC, Zhang H (2011) Centennial-to decadal-scale monsoon precipitation variability in the semi-humid region, northern China during the last 1860 years: records from stalagmites in Huangye Cave. Holocene 21:287–296. doi: 10.1177/0959683610378880 CrossRefGoogle Scholar
  57. Tan L, Cai Y, Cheng H, Edwards RL, Shen CC, Gao Y, An Z (2015) Climate significance of speleothem δ18O from central China on decadal timescale. J Asian Earth Sci 106:150–155. doi: 10.1016/j.jseaes.2015.03.008 CrossRefGoogle Scholar
  58. Tao Y, Zhang W, Duan C, Chen Y, Ren J, Xing D, He Q (2014) Climatic causes of continuous drought over Yunnan province from 2009 to 2012. J Yunnan Univ 36:866–874. doi: 10.7540/j.ynu.20140312 Google Scholar
  59. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94. doi: 10.2307/210739 CrossRefGoogle Scholar
  60. Ummenhofer CC, D'arrigo RD, Anchukaitis KJ, Buckley BM, Cook ER (2013) Links between Indo-Pacific climate variability and drought in the Monsoon Asia Drought Atlas. Clim Dynam 40:1319–1334. doi: 10.1007/s00382-012-1458-1 CrossRefGoogle Scholar
  61. Wang B (2006) The Asian monsoon. Springer, ChichesterGoogle Scholar
  62. Wang B, Xiang B, Li J, Webster PJ, Rajeevan MN, Liu J, Ha KJ (2015) Rethinking Indian monsoon rainfall prediction in the context of recent global warming. Nat Commun 6:7154. doi: 10.1038/ncomms8154 CrossRefGoogle Scholar
  63. Webster PJ, Magana VO, Palmer T, Shukla J, Tomas R, Yanai Mu, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res Oceans (1978–2012) 103:14451–14510. doi: 10.1029/97JC02719 CrossRefGoogle Scholar
  64. Wernicke J, Griebinger J, Hochreuther P, Brauning A (2015) Variability of summer humidity during the past 800 years on the eastern Tibetan Plateau inferred from δ18O of tree-ring cellulose. Clim Past 11:327–337. doi: 10.5194/cp-11-327-2015 CrossRefGoogle Scholar
  65. Wilson R, Tudhope A, Brohan P, Briffa K, Osborn T, Tett S (2006) Two-hundred-fifty years of reconstructed and modeled tropical temperatures. J Geophys Res 111:C10007. doi: 10.1029/2005JC003188 CrossRefGoogle Scholar
  66. Wu G (2011) Drought in southwest China. Disaster Reduction in China, vol. 1, p 26Google Scholar
  67. Xu H, Hong Y, Hong B (2012) Decreasing Asian summer monsoon intensity after 1860 AD in the global warming epoch. Clim Dyn 39:2079–2088. doi: 10.1007/s00382-012-1378-0 CrossRefGoogle Scholar
  68. Xu H, Yeager KM, Lan J, Liu B, Sheng E, Zhou X (2015) Abrupt Holocene Indian Summer Monsoon failures: a primary response to solar activity? Holocene 25:677–685. doi: 10.1177/0959683614566252 CrossRefGoogle Scholar
  69. Yin H (2010) Droughts in southwest China: how far from drought to catastrophe? South Window 8:54–56Google Scholar
  70. Zhang Q, Li Y (2014) Climatic variation of rainfall and rain day in southwest China for last 48 years. Plateau Meteor 33:372–383. doi: 10.7522/j.issn.1000-0534.2013.00032 Google Scholar
  71. Zhang P, Cheng H, Edwards RL, Chen F, Wang Y, Yang X, Liu J, Tan M, Wang X, Liu J (2008) A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science 322:940–942. doi: 10.1126/science.1163965 CrossRefGoogle Scholar
  72. Zhang X, Zhang X, Guan H, Xie Z (2011) The atmospheric circulation features of the heavy drought in southwest China in autumn 2009. Trop Geogr 31:21–27Google Scholar
  73. Zhang W, Jin FF, Zhao JX, Qi L, Ren HL (2013) The possible influence of a nonconventional El Nino on the severe autumn drought of 2009 in Southwest China. J Clim 26:8392–8405. doi: 10.1175/JCLI-D-12-00851.1 CrossRefGoogle Scholar
  74. Zhao H, Moore GWK (2006) Reduction in Himalayan snow accumulation and weakening of the trade winds over the Pacific since the 1840s. Geophys Res Lett 33:L17709. doi: 10.1029/2006GL027339 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Liangcheng Tan
    • 1
    • 2
    • 3
    Email author
  • Yanjun Cai
    • 1
    • 2
  • Zhisheng An
    • 1
    • 2
  • Hai Cheng
    • 2
    • 4
  • Chuan-Chou Shen
    • 5
  • Yongli Gao
    • 6
  • R. Lawrence Edwards
    • 4
  1. 1.State Key Laboratory of Loess and Quaternary Geology, Institute of Earth EnvironmentChinese Academy of SciencesXi’anChina
  2. 2.Institute of Global Environmental ChangeXi’an Jiaotong UniversityXi’anChina
  3. 3.Joint Center for Global Change Studies (JCGCS)BeijingChina
  4. 4.Department of Earth SciencesUniversity of MinnesotaMinneapolisUSA
  5. 5.High-Precision Mass Spectrometry and Environment Change Laboratory (HISPEC), Department of GeosciencesNational Taiwan UniversityTaipeiTaiwan
  6. 6.Department of Geological Sciences, Center for Water ResearchUniversity of Texas at San AntonioSan AntonioUSA

Personalised recommendations