Climate Dynamics

, Volume 48, Issue 3–4, pp 1187–1211 | Cite as

Projections of Southern Hemisphere atmospheric circulation interannual variability

  • Simon Grainger
  • Carsten S. Frederiksen
  • Xiaogu Zheng


An analysis is made of the coherent patterns, or modes, of interannual variability of Southern Hemisphere 500 hPa geopotential height field under current and projected climate change scenarios. Using three separate multi-model ensembles (MMEs) of coupled model intercomparison project phase 5 (CMIP5) models, the interannual variability of the seasonal mean is separated into components related to (1) intraseasonal processes; (2) slowly-varying internal dynamics; and (3) the slowly-varying response to external changes in radiative forcing. In the CMIP5 RCP8.5 and RCP4.5 experiments, there is very little change in the twenty-first century in the intraseasonal component modes, related to the Southern annular mode (SAM) and mid-latitude wave processes. The leading three slowly-varying internal component modes are related to SAM, the El Niño–Southern oscillation (ENSO), and the South Pacific wave (SPW). Structural changes in the slow-internal SAM and ENSO modes do not exceed a qualitative estimate of the spatial sampling error, but there is a consistent increase in the ENSO-related variance. Changes in the SPW mode exceed the sampling error threshold, but cannot be further attributed. Changes in the dominant slowly-varying external mode are related to projected changes in radiative forcing. They reflect thermal expansion of the tropical troposphere and associated changes in the Hadley Cell circulation. Changes in the externally-forced associated variance in the RCP8.5 experiment are an order of magnitude greater than for the internal components, indicating that the SH seasonal mean circulation will be even more dominated by a SAM-like annular structure. Across the three MMEs, there is convergence in the projected response in the slow-external component.


Modes of variability Atmospheric circulation Southern Hemisphere CMIP5 models Climate change 



CMIP5 data is available from We acknowledge the World Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modelling groups for producing and making available their model output. For CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We acknowledge the resources and support of the National Computational Infrastructure at the Australian National University for maintaining the CMIP5 data at the Australian Earth Systems Grid node. J. Sisson provided invaluable assistance in pre-processing the CMIP5 data. This work is supported by the Australian Government Department of the Environment through the Australian Climate Change Science Program. X. Zheng is supported by the National Basic Research Program of China (Grant No. 2012CB956203). Comments from A. Dowdy, S. Osbrough and two anonymous reviewers helped to considerably improve this paper.


  1. Allan RJ, Haylock MR (1993) Circulation features associated with the winter rainfall decrease in southwestern Australia. J Clim 6:1356–1367. doi: 10.1175/1520-0442(1993)006<1356:CFAWTW>2.0.CO;2 CrossRefGoogle Scholar
  2. Bayr T, Dommenget D, Martin T, Power SB (2014) The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability. Clim Dyn 43:2747–2763. doi: 10.1007/s00382-014-2091-y CrossRefGoogle Scholar
  3. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2018. doi: 10.1007/s00382-013-1783-z CrossRefGoogle Scholar
  4. Boer GJ (2009) Changes in interannual variability and decadal potential predictability under global warming. J Clim 22:3098–3109. doi: 10.1175/2008JCLI2835.1 CrossRefGoogle Scholar
  5. CCIA (2015) Climate change in Australia. Information for Australia’s natural resource management regions: Technical report. CSIRO and Bureau of Meteorology, Australia.
  6. Chadwick R, Boutle I, Martin G (2013) Spatial patterns of precipitation change in CMIP5: why the rich do not get richer in the tropics. J Clim 26:3803–3822. doi: 10.1175/JCLI-D-12-00543.1 CrossRefGoogle Scholar
  7. Collins M et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF et al (eds) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1029–1136Google Scholar
  8. Compo GP et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  9. Flato G et al (2013) Evaluation of climate models. In: Stocker TF et al (eds) Climate change 2013: the physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 741–866Google Scholar
  10. Fogt RL, Bromwich DH, Hines KM (2011) Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim Dyn 36:1555–1576. doi: 10.1007/s00382-010-0905-0 CrossRefGoogle Scholar
  11. Frederiksen JS, Frederiksen CS (1993) Southern Hemisphere storm tracks, blocking, and low-frequency anomalies in a primitive equation model. J Atmos Sci 50:3148–3163. doi: 10.1175/1520-0469(1993)050<3148:SHSTBA>2.0.CO;2 CrossRefGoogle Scholar
  12. Frederiksen JS, Frederiksen CS (2007) Interdecadal changes in Southern Hemisphere winter storm track modes. Tellus A 59:599–617. doi: 10.1111/j.1600-0870.2007.00264.x CrossRefGoogle Scholar
  13. Frederiksen CS, Grainger S (2015) The role of external forcing in prolonged trends in Australian rainfall. Clim Dyn. doi: 10.1007/s00382-015-2482-8 Google Scholar
  14. Frederiksen CS, Zheng X (2007a) Variability of seasonal-mean fields arising from intraseasonal variability. Part 3: application to SH winter and summer circulations. Clim Dyn 28:849–866. doi: 10.1007/s00382-006-0214-9 CrossRefGoogle Scholar
  15. Frederiksen CS, Zheng X (2007b) Coherent patterns of interannual variability of the atmospheric circulation: the role of intraseasonal variability. In: Denier J, Frederiksen JS (eds) Frontiers in turbulence and coherent structures. World scientific lecture notes in complex systems, vol 6. World Scientific Publications, Singapore, pp 87–120. doi: 10.1142/6320 CrossRefGoogle Scholar
  16. Frederiksen CS, Zheng X, Grainger S (2014) Teleconnections and predictive characteristics of Australian seasonal rainfall. Clim Dyn 43:1381–1408. doi: 10.1007/s00382-013-1952-0 CrossRefGoogle Scholar
  17. Frederiksen CS, Zheng X, Grainger S (2015) Simulated modes of inter-decadal predictability in sea surface temperature. Clim Dyn. doi: 10.1007/s00382-015-2699-6 Google Scholar
  18. Freitas ACV, Rao VB (2011) Multidecadal and interannual changes of stationary Rossby waves. Q J R Meteorol Soc 137:2157–2173. doi: 10.1002/qj.894 CrossRefGoogle Scholar
  19. Grainger S, Frederiksen CS, Zheng X (2011a) Estimating components of covariance between two climate variables using model ensembles. ANZIAM J 52:C318–C332.
  20. Grainger S, Frederiksen CS, Zheng X, Fereday D, Folland CK, Jin EK, Kinter JL, Knight JR, Schubert S, Syktus J (2011b) Modes of variability of Southern Hemisphere atmospheric circulation estimated by AGCMs. Clim Dyn 36:473–490. doi: 10.1007/s00382-009-0720-7 CrossRefGoogle Scholar
  21. Grainger S, Frederiksen CS, Zheng X (2013) Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: assessment and projections. Clim Dyn 41:479–500. doi: 10.1007/s00382-012-1659-7 CrossRefGoogle Scholar
  22. Grainger S, Frederiksen CS, Zheng X (2014) Assessment of modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP5 models. J Clim 27:8107–8125. doi: 10.1175/JCLI-D-14-00251.1 CrossRefGoogle Scholar
  23. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. doi: 10.1007/s00382-010-0810-6 CrossRefGoogle Scholar
  24. Holton JR (2004) An introduction to dynamic meteorology. Elsevier Academic Publishing, BurlingtonGoogle Scholar
  25. Hope PK, Drosdowsky W, Nicholls N (2006) Shifts in the synoptic systems influencing southwest Western Australia. Clim Dyn 26:751–764. doi: 10.1007/s00382-006-0115-y CrossRefGoogle Scholar
  26. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 CrossRefGoogle Scholar
  27. Kidson JW (1999) Principal modes of Southern Hemisphere low-frequency variability obtained from NCEP–NCAR reanalyses. J Clim 12:2808–2830. doi: 10.1175/1520-0442(1999)012<2808:PMOSHL>2.0.CO;2 CrossRefGoogle Scholar
  28. Knutti R, Furrer R, Tebaldi C, Cermak J, Meehl GA (2010) Challenges in combining projections from multiple climate models. J Clim 23:2739–2758. doi: 10.1175/2009JCLI3361.1 CrossRefGoogle Scholar
  29. Leith CE (1973) The standard error of time-average estimates of climatic means. J Appl Meteorol 12:1066–1069. doi: 10.1175/1520-0450(1973)012<1066:TSEOTA>2.0.CO;2 CrossRefGoogle Scholar
  30. Leith CE (1975) Climate response and fluctuation dissipation. J Atmos Sci 32:2022–2026. doi: 10.1175/1520-0469(1975)032<2022:CRAFD>2.0.CO;2 CrossRefGoogle Scholar
  31. Marshall GJ (2003) Trends in the Southern annular mode from observations and reanalyses. J Clim 16:4134–4143. doi: 10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2 CrossRefGoogle Scholar
  32. McSweeney CF, Jones RG, Booth BBB (2012) Selecting ensemble members to provide regional climate change information. J Clim 25:7100–7121. doi: 10.1175/JCLI-D-11-00526.1 CrossRefGoogle Scholar
  33. Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi: 10.1175/BAMS-88-9-1383 CrossRefGoogle Scholar
  34. Mo KC (2000) Relationships between low-frequency variability in the Southern Hemisphere and sea surface temperature anomalies. J Clim 13:3599–3610. doi: 10.1175/1520-0442(2000)013<3599:RBLFV>2.0.CO;2 CrossRefGoogle Scholar
  35. Monahan AH, Fyfe JC, Ambaum MHP, Stephenson DB, North GR (2009) Empirical orthogonal functions: the medium is the message. J Clim 22:6501–6514. doi: 10.1175/2009JCLI3062.1 CrossRefGoogle Scholar
  36. Nguyen H, Evans A, Lucas C, Smith I, Timbal B (2013) The Hadley circulation in reanalyses: climatology, variability, and change. J Clim 26:3357–3376. doi: 10.1175/JCLI-D-12-00224.1 CrossRefGoogle Scholar
  37. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 CrossRefGoogle Scholar
  38. Polvani LM, Waugh DW, Correa GJP, Son S-W (2011) Stratospheric ozone depletion: the main driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere. J Clim 24:795–812. doi: 10.1175/2010JCLI3772.1 CrossRefGoogle Scholar
  39. Rauthe M, Hense A, Paeth H (2004) A model intercomparison study of climate change-signals in extratropical circulation. Int J Climatol 24:643–662. doi: 10.1002/joc.1025 CrossRefGoogle Scholar
  40. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  41. Renwick JA (2005) Persistent positive anomalies in the Southern Hemisphere circulation. Mon Weather Rev 133:977–988. doi: 10.1175/MWR2900.1 CrossRefGoogle Scholar
  42. Rowell DP, Folland CK, Maskell K, Ward MN (1995) Variability of summer rainfall over tropical North Africa (1906–92): observations and modelling. Q J R Meteorol Soc 121:669–704. doi: 10.1002/qj.49712152311 Google Scholar
  43. Sandeep S, Stordal F, Sardeshmukh PD, Compo GP (2014) Pacific Walker Circulation variability in coupled and uncoupled climate models. Clim Dyn 43:103–117. doi: 10.1007/s00382-014-2135-3 CrossRefGoogle Scholar
  44. Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geosci 7:703–708. doi: 10.1038/ngeo2253 CrossRefGoogle Scholar
  45. Simpson IR, Blackburn M, Haigh JD (2009) The role of eddies in driving the tropospheric response to stratospheric heating perturbations. J Atmos Sci 66:1347–1365. doi: 10.1175/2008JAS2758.1 CrossRefGoogle Scholar
  46. Simpson IR, Shepherd TG, Hitchcock P, Scinocca JF (2013) Southern annular mode dynamics in observations and models. Part II: Eddy feedbacks. J Clim 26:5220–5241. doi: 10.1175/JCLI-D-12-00495.1 CrossRefGoogle Scholar
  47. Staten PW, Rutz JJ, Reichler T, Lu J (2012) Breaking down the tropospheric circulation response by forcing. Clim Dyn 39:2361–2375. doi: 10.1007/s00382-011-1267-y CrossRefGoogle Scholar
  48. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi: 10.1029/2000JD900719 CrossRefGoogle Scholar
  49. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  50. van Vuuren DP et al (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  51. Wilks DS (2006) Statistical methods in the atmospheric sciences. Academic Press, San Diego, p 648Google Scholar
  52. Yokohata T, Annan JD, Collins M, Jackson CS, Shiogama H, Watanabe M, Emori S, Yoshimori M, Abe M, Webb MJ, Hargreaves JC (2013) Reliability and importance of structural diversity of climate model ensembles. Clim Dyn 41:2745–2763. doi: 10.1007/s00382-013-1733-9 CrossRefGoogle Scholar
  53. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10:1004–1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 CrossRefGoogle Scholar
  54. Zheng X, Frederiksen CS (1999) Validating interannual variability in an ensemble of AGCM simulations. J Clim 12:2386–2396. doi: 10.1175/1520-0442(1999)012<2386:VIVIAE>2.0.CO;2 CrossRefGoogle Scholar
  55. Zheng X, Frederiksen CS (2004) Variability of seasonal-mean fields arising from intraseasonal variability: part 1, methodology. Clim Dyn 23:177–191. doi: 10.1007/s00382-004-0428-7 Google Scholar
  56. Zheng X, Straus DM, Frederiksen CS, Grainger S (2009) Potentially predictable patterns of extratropical tropospheric circulation in an ensemble of climate simulations with the COLA AGCM. Q J R Meteorol Soc 135:1816–1829. doi: 10.1002/qj.492 CrossRefGoogle Scholar
  57. Zheng X, Sugi M, Frederiksen CS (2004) Interannual variability and predictability in an ensemble of climate simulations with the MRI-JMA AGCM. J Meteorol Soc Japan 82:1–18. doi: 10.2151/jmsj.82.1 CrossRefGoogle Scholar
  58. Zwiers FW (1996) Interannual variability and predictability in an ensemble of AMIP climate simulations conducted with the CCC GCM2. Clim Dyn 12:825–847. doi: 10.1007/s003820050146 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Simon Grainger
    • 1
  • Carsten S. Frederiksen
    • 1
  • Xiaogu Zheng
    • 2
  1. 1.Collaboration for Australian Weather and Climate ResearchBureau of MeteorologyMelbourneAustralia
  2. 2.Key Laboratory of Regional Climate-Environment Research for East Asia, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations