Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Responses of European precipitation distributions and regimes to different blocking locations

Abstract

In this work we performed an analysis on the impacts of blocking episodes on seasonal and annual European precipitation and the associated physical mechanisms. Distinct domains were considered in detail taking into account different blocking center positions spanning between the Atlantic and western Russia. Significant positive precipitation anomalies are found for southernmost areas while generalized negative anomalies (up to 75 % in some areas) occur in large areas of central and northern Europe. This dipole of anomalies is reversed when compared to that observed during episodes of strong zonal flow conditions. We illustrate that the location of the maximum precipitation anomalies follows quite well the longitudinal positioning of the blocking centers and discuss regional and seasonal differences in the precipitation responses. To better understand the precipitation anomalies, we explore the blocking influence on cyclonic activity. The results indicate a split of the storm-tracks north and south of blocking systems, leading to an almost complete reduction of cyclonic centers in northern and central Europe and increases in southern areas, where cyclone frequency doubles during blocking episodes. However, the underlying processes conductive to the precipitation anomalies are distinct between northern and southern European regions, with a significant role of atmospheric instability in southern Europe, and moisture availability as the major driver at higher latitudes. This distinctive underlying process is coherent with the characteristic patterns of latent heat release from the ocean associated with blocked and strong zonal flow patterns. We also analyzed changes in the full range of the precipitation distribution of several regional sectors during blocked and zonal days. Results show that precipitation reductions in the areas under direct blocking influence are driven by a substantial drop in the frequency of moderate rainfall classes. Contrarily, southwards of blocking systems, frequency increases in moderate to extreme rainfall classes largely determine the precipitation anomaly in the accumulated totals. In this context, we show the close relationship between the more intrinsic torrential nature of Mediterranean precipitation regimes and the role of blocking systems in increasing the probability of extreme events.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Altava-Ortiz V, Llasat M, Ferrari E, Atencia A, Sirangelo B (2010) Monthly rainfall changes in Central and Western Mediterranean basins, at the end of the 20th and beginning of the 21st centuries. Int J Climatol 31(13):1943–1958. doi:10.1002/joc.2204

  2. Anstey JA, Davini P, Gray LJ, Woollings TJ, Butchar N, Cagnazzo C, Christiansen B, Hardiman SC, Osprey SM, Yang S (2013) Multi-model analysis of Northern Hemisphere winter blocking: model biases and the role of resolution. J Geophys Res Atmos 118:3956–3971. doi:10.1002/jgrd.50231

  3. Barnes EA, Slingo J, Woollings T (2012) A methodology for the comparison of blocking climatologies across indices, models and climate scenarios. Clim Dyn 38:2467–2481. doi:10.1007/s00382-011-1243-6

  4. Barriopedro D, Calvo N (2014) On the relationship between ENSO, stratospheric sudden warmings, and blocking. J Clim 27(12):4704–4720. doi:10.1175/JCLI-D-13-00770.1

  5. Barriopedro D, García-Herrera R, Lupo AR, Hernández E (2006) A climatology of northern hemisphere blocking. J Clim 19:1042–1063. doi:10.1175/JCLI3678.1

  6. Barriopedro D, García-Herrera R, Trigo RM (2010a) Application of blocking diagnosis methods to general circulation models. Part I: a novel detection scheme. Clim Dyn 35:1373–1391. doi:10.1007/s00382-010-0767-5

  7. Barriopedro D, García-Herrera R, González-Rouco JF, Trigo RM (2010b) Application of blocking diagnosis methods to general circulation models. Part II: model simulations. Clim Dyn 35(7–8):1393–1409. doi:10.1007/s00382-010-0766-6

  8. Barriopedro D, Antón M, García JA (2010c) Atmospheric blocking signatures in total ozone and ozone mini-holes. J Clim 23(14):3967–3983. doi:10.1175/2010JCLI3508.1

  9. Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332:220–224. doi:10.1126/science.1201224

  10. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2009) Improved confidence in climate change projections of precipitation evaluated using daily statistics from the PRUDENCE ensemble. Clim Dyn 32(7–8):1097–1106. doi:10.1007/s00382-008-0446-y

  11. Boberg F, Berg P, Thejll P, Gutowski WJ, Christensen JH (2010) Improved confidence in climate change projections of precipitation further evaluated using daily statistics from ENSEMBLES models. Clim Dyn 35:1509–1520. doi:10.1007/s00382-009-0683-8

  12. Buehler T, Raible CC, Stocker TF (2011) The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus Ser A 63:212–222. doi:10.1111/j.1600-0870.2010.00492.x

  13. Burgueno A, Martinez MD, Serra C, Lana X (2010) Statistical distributions of daily rainfall regime in Europe for the period 1951-2000. Theoret Appl Climatol 102:213–226. doi:10.1007/s00704-010-0251-5

  14. Casanueva A, Rodríguez-Puebla C, Frías MD, González-Reviriego N (2014) Variability of extreme precipitation over Europe and its relationships with teleconnection patterns. Hidrol Earth Syst Sci 18(2):709–725. doi:10.5194/hess-18-709-2014

  15. Cortesi N, Trigo RM, Gonzalez-Hidalgo JC, Ramos AM (2013) Modelling monthly precipitation with circulation weather types for a dense network of stations over Iberia. Hidrol Earth Syst Sci 17(2):665–678. doi:10.5194/hess-17-665-2013

  16. Croci-Maspoli M, Schwierz C, Davies HC (2007) Atmospheric blocking: space-time links to the NAO and PNA. Clim Dyn 29:713–725. doi:10.1007/s00382-007-0259-4

  17. Davini P, Cagnazzo C, Neale R, Tribbia J (2012) Coupling between Greenland blocking and the North Atlantic Oscillation pattern. Geophys Res Lett 39:L14701. doi:10.1029/2012GL052315

  18. Draxler RR, Rolph GD (2003) HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY Website (http://www.arl.noaa.gov/HYSPLIT.php). NOAA Air Resources Laboratory, Silver Spring, MD

  19. Dunn-Sigouin E, Son S (2013) Evaluation of northern hemisphere blocking climatology in the global environment multiscale model. Mon Weather Rev 141(2):707–727. doi:10.1175/MWR-D-12-00134.1

  20. Garcia-Herrera R, Diaz J, Trigo RM, Luterbacher J, Fischer EM (2010) A review of the european summer heat wave of 2003. Crit Rev Environ Sci Technol 40:267–306. doi:10.1080/10643380802238137

  21. Gimeno L, Nieto R, Trigo RM, Vicente S, Lopez-Moreno JI (2010) Where does the Iberian Peninsula moisture come from? An answer based on a Largrangian approach. J Hydrometeorol. doi: 10.1175/2009JHM1182.1 (Published)

  22. Gimeno L, Stohl A, Trigo RM, Domínguez F, Yoshimura K, Yu L, Drumond A, Durán-Quesada AM, Nieto R (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50:RG4003. doi:10.1029/2012RG000389

  23. Gimeno L, Nieto R, Drumond A, Castillo R, Trigo RM (2013) Influence of the intensification of the major oceanic moisture sources on continental precipitation. Geophys Res Lett 40:1443–1450. doi:10.1002/grl.50338

  24. Grams CM, Wernli H, Bottcher M, Campa J, Corsmeier U, Jones SC, Keller JH, Lenz CJ, Wiegand L (2011) The key role of diabatic processes in modifying the upper-tropospheric wave guide: a North Atlantic case-study. Quat J R Meteorol Soc 137(661):2174–2193. doi:10.1002/qj.891

  25. Haylock MR, Hofstra N, Klein Tank AMJ, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res 113:D20119. doi:10.1029/2008JD10201

  26. Hofstra N, Haylock M, New M, Jones PD (2009) Testing E-OBS European high-resolution gridded data set of daily precipitation and surface temperature. J Geophys Res 114:D21101. doi:10.1029/2009JD011799

  27. Hofstra N, New M, McSweeney C (2010) The influence of interpolation and station network density on the distributions and trends of climate variables in gridded daily data. Clim Dyn 35(5):841–858. doi:10.1007/s00382-009-0698-1

  28. Hoy A, Schucknecht A, Sepp M, Matschullat J (2014) Large-scale synoptic types and their impact on European precipitation. Theoret Appl Climatol 116(1):19–35. doi:10.1007/s00704-013-0897-x

  29. Hughes M, Hall A, Fovell RG (2009) Blocking in areas of complex topography, and its influence on rainfall distribution. J Atmos Sci 66(2):508–518. doi:10.1175/2008JAS2689.1

  30. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

  31. Kutiel H, Maheras P, Guika S (1996) Circulation and extreme rainfall conditions in the eastern Mediterranean during the last century. Int J Climatol 16:73–92. doi:10.1002/(SICI)1097-0088(199601)16:1<73:AID-JOC997>3.0.CO;2-G

  32. Liberato MLR, Ramos AM, Trigo RM, Trigo IF, Durán-Quesada AM, Nieto R, Gimeno L (2012) Moisture sources and large-scale dynamics associated with a flash flood event. In: Lin J, Brunner D, Gerbig C, Stohl A, Luhar A, Webley P (eds) Lagrangian modeling of the atmosphereGeophys. Monogr. Ser. Vol 200, American Geophysical Union, Washington, DC, pp 111–126, doi: 10.1029/2012GM001244

  33. Liberato MLR, Pinto JG, Trigo RM, Ludwig P, Ordóñez P, Yuen D, Trigo IF (2013) Explosive development of winter storm Xynthia over the Subtropical North Atlantic Ocean. Nat Hazard Earth Syst Sci 13:2239–2251. doi:10.5194/nhess-13-2239-2013

  34. Lolis CJ, Bartzokas A, Katsoulis BD (2004) Relation between sensible and latent heat fluxes in the Mediterranean and precipitation in the Greek area during winter. Int J Climatol 24(14):1803–1816. doi:10.1002/joc.1112

  35. Masato G, Hoskins BJ, Woollings TJ (2012) Wave-breaking characteristics of midlatitude blocking. Quart J R Meteorol Soc 138(666):1285–1296. doi:10.1002/qj.990

  36. Masato G, Hoskins BJ, Woollings T (2013) Winter and summer northern hemisphere blocking in CMIP5 models. J Clim 26(18):7044–7059. doi:10.1175/JCLI-D-12-00466.1

  37. Matsueda M, Mizuta R, Kusunoki S (2009) Future change in wintertime atmospheric blocking simulated using a 20-km-mesh atmospheric global circulation model. J Geophys Res 114:D12114. doi:10.1029/2009JD011919

  38. Michel C, Riviere G, Terray L, Joly B (2012) The dynamical link between surface cyclones, upper-tropospheric Rossby wave breaking and the life cycle of the Scandinavian blocking. Geophys Res Lett 39:L10806. doi:10.1029/2012GL051682

  39. Miralles DG, Teuling AJ, van Heerwaarden CC, de Arellano JVG (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7(5):345–349. doi:10.1038/NGEO2141

  40. Neu U, Akperov MG, Bellenbaum N, Benestad R, Blender R, Caballero R, Cocozza A, Dacre HF, Feng Y, Fraedrich K, Grieger J, Gulev S, Hanley J, Hewson T, Inatsu M, Keay K, Kew SF, Kindem I, Leckebusch GC, Liberato MLR, Lionello P, Mokhov II, Pinto JG, Raible CC, Reale M, Rudeva I, Schuster M, Simmonds I, Sinclair M, Sprenger M, Tilinina ND, Trigo IF, Ulbrich S, Ulbrich U, Wang XL, Wernli H (2013) IMILAST—a community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull Am Meteorol Soc 94(4):529–547. doi:10.1175/BAMS-D-11-00154.1

  41. Nieto R, Gimeno L, de la Torre L, Ribera P, Barriopedro D, García-Herrera R (2007) Interannual variability of cut-off low systems over the European sector: the role of blocking and the northern hemisphere circulation modes. Meteorol Atmos Phys 96:85–101. doi:10.1007/s00703-006-0222-7

  42. Peñarrocha D, Estrela M, Millán M (2002) Classification of daily rainfall patterns in a Mediterranean area with extreme intensity levels: the Valencia region. Int J Climatol 22:677–695. doi:10.1002/joc.747

  43. Perkins SE, Pitman AJ, Holbrook NJ, McAneney J (2007) Evaluation of the AR4 climate models’ simulated daily maximum temperature, minimum temperature, and precipitation over Australia using probability density functions. J Clim 20:4356–4376. doi:10.1175/JCLI4253.1

  44. Pfahl S (2014) Characterising the relationship between weather extremes in Europe and synoptic circulation features. Nat Hazard Earth Syst Sci 14:1461–1475. doi:10.5194/nhess-14-1461-2014

  45. Ramos AM, Trigo RM, Liberato MLR, Tomé R (2015) Daily Precipitation Extreme Events in the Iberian Peninsula and Its Association with Atmospheric Rivers. J Hydrometeorol 16:579–597. doi:10.1175/JHM-D-14-0103.1

  46. Rex DF (1950) Blocking action in the middle troposphere and its effect upon regional climate. Part II: the climatology of blocking action. Tellus 2:275–301

  47. Rex DF (1951) The effect of Atlantic blocking action upon European climate. Tellus 3:1–16

  48. Ricard D, Ducrocq V, Auger L (2012) A climatology of the mesoscale environment associated with heavily precipitating events over a northwestern mediterranean area. J Appl Meteorol Climatol 51(3):468–488. doi:10.1175/JAMC-D-11-017.1

  49. Rolph GD (2003) Real-time Environmental Applications and Display sYstem (READY) Website (http://www.arl.noaa.gov/ready.php). NOAA Air Resources Laboratory, Silver Spring, MD

  50. Ruti PM, Dell’Aquila A, Giorgi F (2014) Understanding and attributing the Euro-Russian summer blocking signatures. Atmos Sci Lett 15(3):204–210. doi:10.1002/asl2.490

  51. Santos JA, Pinto JG, Ulbrich U (2009) On the development of strong ridge episodes over the eastern North Atlantic. Geophys Res Lett 36:L17804. doi:10.1029/2009GL039086

  52. Santos JA, Woollings T, Pinto JG (2013) Are the winters 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic Jet Stream? Mon Weather Rev 131(10):3626–3640. doi:10.1175/MWR-D-13-00024.1

  53. Scaife AA, Woollings T, Knight J, Martin G, Hinton T (2010) Atmospheric blocking and mean biases in climate models. J Clim 23:6132–6152. doi:10.1175/2010JCLI3728.1

  54. Sillmann J, Croci-Maspoli M (2009) Present and future atmospheric blocking and its impact on European mean and extreme climate. Geophys Res Lett 36:L10702. doi:10.1029/2009GL038259

  55. Sillmann J, Croci-Maspoli M, Kallache M, Katz RW (2011) Extreme cold winter temperatures in Europe under the influence of north atlantic atmospheric blocking. J Clim 24(22):5899–5913. doi:10.1175/2011JCLI4075.1

  56. Soares PMM, Cardoso RM, Ferreira JJ, Miranda PMA (2014) Climate change impact on Portuguese precipitation: ENSEMBLES regional climate model results. Clim Dyn 117:D07114. doi:10.1007/s00382-014-2432-x

  57. Sousa PM, Trigo RM, Aizpurua P, Nieto R, Gimeno L, García-Herrera R (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazards Earth Syst Sci 11:33–51. doi:10.5194/nhess-11-33-2011

  58. Sousa PM, Barriopedro D, Trigo RM, Ramos AM, Nieto R, Gimeno L, Turkman KF, Liberato MLR (2015) Impact of Euro-Atlantic blocking patterns in Iberia precipitation using a novel high resolution dataset. Clim Dyn. doi:10.1007/s00382-015-2718-7

  59. Treidl RA, Birch EC, Sajecki P (1981) Blocking action in the Northern Hemisphere: a climatological study. Atmos Ocean 19:1–23. doi:10.1080/07055900.1981.9649096

  60. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Dyn 26(2–3):127–143. doi:10.1007/s00382-005-0065-9

  61. Trigo RM, Trigo IF, DaCamara CC, Osborn TJ (2004) Winter blocking episodes in the European-Atlantic sector: climate impacts and associated physical mechanisms in the reanalysis. Clim Dyn 23:17–28. doi:10.1007/s00382-004-0410-4

  62. Trigo RM, Valente MA, Trigo IF, Miranda M, Ramos AM, Paredes D, García-Herrera R (2008) The impact of north atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic. Ann N Y Acad Sci 1146:212–234. doi:10.1196/annals.1446.014

  63. Vial J, Osborn TJ (2012) Assessment of atmosphere-ocean general circulation model simulations of winter Northern Hemisphere atmospheric blocking. Clim Dyn 39:95–112. doi:10.1007/s00382-011-1177-z)

  64. Vicente-Serrano SM, Beguería S, Lopez-Moreno JI, El Kenawy AM, Angulo-Martinez M (2009) Daily atmospheric circulation events and extreme precipitation risk in northeast Spain: role of the North Atlantic Oscillation, the Western Mediterranean Oscillation, and the Mediterranean. J Geophys Res 114:D08106. doi:10.1029/2008JD011492

  65. Vicente-Serrano SM, Trigo RM, López-Moreno JI, Liberato MLR, Lorenzo-Lacruz J, Beguería S, Morán-Tejeda E, El Kenawy A (2011) Extreme winter precipitation in the Iberian Peninsula in 2010: anomalies, driving mechanisms and future projections. Clim Res 46:51–65. doi:10.3354/cr00977

  66. Walter K, Graf HF (2005) The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength. Atmos Chem Phys 5:239–248

  67. Wang L, Chen W, Zhou W, Chan JCL, Barriopedro D, Huang R (2010) Effect of the climate shift around mid 1970’s on the relationship between wintertime Ural blocking circulation and East Asian climate. Int J Climatol 30(1):153–158. doi:10.1002/joc.1876

  68. Yao Y, Luo DH (2014a) Relationship between zonal position of the North Atlantic Oscillation and Euro-Atlantic blocking events and its possible effect on the weather over Europe. Sci China Earth Sci 57(11):2626–2638. doi:10.1007/s11430-014-4949-6

  69. Yao Y, Luo DH (2014b) The anomalous european climates linked to different euro-atlantic blocking. Atmos Ocean Sci Lett 7(4):309–313. doi:10.3878/j.issn.1674-2834.14.0001

Download references

Acknowledgments

Pedro M. Sousa was supported by the Portuguese Science Foundation (FCT) through a doctoral grant (SFRH/BD/84395/2012). Alexandre M. Ramos was also supported by FCT in a postdoctoral grant (FCT/DFRH/SFRH/BPD/84328/2012). Pedro M.M. Soares thanks the Portuguese Science Foundation (FCT) for funding under Project SOLAR–PTDC/GEOMET/7078/2014 This work was partially supported by FEDER funds through the COMPETE (Programa Operacional Factores de Competitividade) Programme and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) through Project STORMEx FCOMP-01-0124-FEDER-019524 (PTDC/AAC-CLI/121339/2010). We acknowledge the E-OBS dataset from the EU-FP6 Project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D Project (http://www.ecad.eu). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model and/or READY website (http://www.ready.noaa.gov) used in this publication.

Author information

Correspondence to Pedro M. Sousa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3489 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sousa, P.M., Trigo, R.M., Barriopedro, D. et al. Responses of European precipitation distributions and regimes to different blocking locations. Clim Dyn 48, 1141–1160 (2017). https://doi.org/10.1007/s00382-016-3132-5

Download citation

Keywords

  • Atmospheric blocking
  • Precipitation
  • Europe
  • Weather regimes
  • PDF