Advertisement

Climate Dynamics

, Volume 48, Issue 3–4, pp 1089–1108 | Cite as

A multi-model ensemble view of winter heat flux dynamics and the dipole mode in the Mediterranean Sea

  • Giovanni LiguoriEmail author
  • Emanuele Di Lorenzo
  • William Cabos
Article

Abstract

Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east–west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics controlling the leading modes of heat flux variability may enhance our predictability of the climate of the Mediterranean area.

Keywords

Air-sea heat fluxes Winter climate variability Modes of climate variability Mediterranean Sea climate ENSEMBLES project 

References

  1. Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Climate 15:2205–2231. doi: 10.1175/1520-0442(2002)015<2205:Tabtio>2.0.Co;2 CrossRefGoogle Scholar
  2. Andersson A, Bakan S, Fennig K, Grassl H, Klepp C-P, Schulz J (2007) Hamburg ocean atmosphere parameters and fluxes from satellite data—HOAPS-3—monthly mean. World Data Center Climate. doi: 10.1594/WDCC/HOAPS3_MONTHLY Google Scholar
  3. Artale V, Calmanti S, Malanotte-Rizzoli P, Pisacane G, Rupolo V, Tsimplis M (2006) The Atlantic and the Mediterranean Sea as connected systems. Mediterranean climate variability, vol 4. Elsevier, AmsterdamGoogle Scholar
  4. Bhöm U, Küchen M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM-the climate version of LM: brief description and long-term applications. COSMO Newslett n6Google Scholar
  5. Bignami F, Marullo S, Santoleri R, Schiano ME (1995) Longwave radiation budget in the Mediterranean-Sea. J Geophys Res-Oceans 100:2501–2514. doi: 10.1029/94jc02496 CrossRefGoogle Scholar
  6. Bueh C, Nakamura H (2007) Scandinavian pattern and its climatic impact. Q J Roy Meteor Soc 133:2117–2131. doi: 10.1002/Qj.173 CrossRefGoogle Scholar
  7. Calmanti S, Artale V, Sutera A (2006) North Atlantic MOC variability and the Mediterranean outflow: a box-model study. Tellus A 58:416–423. doi: 10.1111/J.1600-0870.2006.00176.X CrossRefGoogle Scholar
  8. Christensen JH, Christensen OB, Lopez P, van Meijgaard E, Botzet M (1996) The HIRHAM4 regional atmospheric climate model. Danish Meteorological Institute Scientific Report 96–4, CopenhagenGoogle Scholar
  9. Collins M, Booth BBB, Harris GR, Murphy JM, Sexton DMH, Webb MJ (2006) Towards quantifying uncertainty in transient climate change. Clim Dyn 27:127–147. doi: 10.1007/s00382-006-0121-0 CrossRefGoogle Scholar
  10. de Sherbinin A (2014) Climate change hotspots mapping: what have we learned? Clim Change 123(1):23–37CrossRefGoogle Scholar
  11. Dommenget D, Latif M (2003) Comments on “A cautionary note on the interpretation of EOFs”. Reply J Climate 16:1094–1097. doi: 10.1175/1520-0442(2003)016<1094:R>2.0.Co;2 CrossRefGoogle Scholar
  12. Garrett C, Outerbridge R, Thompson K (1993) Interannual variability in Mediterranean heat and buoyancy fluxes. J Climate 6:900–910. doi: 10.1175/1520-0442(1993)006<0900:Ivimha>2.0.Co;2 CrossRefGoogle Scholar
  13. Gilman C, Garrett C (1994) Heat-flux parameterizations for the Mediterranean-Sea—the role of atmospheric aerosols and constraints from the water-budget. J Geophys Res-Oceans 99:5119–5134. doi: 10.1029/93jc03069 CrossRefGoogle Scholar
  14. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett. doi: 10.1029/2006gl025734 Google Scholar
  15. Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modelling revisited. J Geophys Res (Atmos) 104:6335–6352. doi: 10.1029/98JD02072 CrossRefGoogle Scholar
  16. Haines K, Wu PL (1995) A modelling study of the thermohaline circulation of the Mediterranean Sea: water formation and dispersal. Oceanol Acta 18:401–417Google Scholar
  17. Haugen JE, Haakensatd H (2006) Validation of HIRHAM version 2 with 50 km and 25 km resolution. RegClim General Technical Report, No. 9, pp 159–173Google Scholar
  18. Herrmann MJ, Somot S (2008) Relevance of ERA40 dynamical downscaling for modeling deep convection in the Mediterranean Sea. Geophys Res Lett. doi: 10.1029/2007gl032442 Google Scholar
  19. Hurrell JW (1995) Decadal trends in the North-Atlantic oscillation—regional temperatures and precipitation. Science 269:676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  20. Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73CrossRefGoogle Scholar
  21. Josey SA (2003) Changes in the heat and freshwater forcing of the eastern Mediterranean and their influence on deep water formation. J Geophys Res. doi: 10.1029/2003jc001778 Google Scholar
  22. Josey SA, Kent EC, Taylor PK (1999) New insights into the ocean heat budget closure problem from analysis of the SOC air-sea flux climatology. J Climate 12:2856–2880. doi: 10.1175/1520-0442(1999)012<2856:Niitoh>2.0.Co;2 CrossRefGoogle Scholar
  23. Josey SA, Somot S, Tsimplis M (2011) Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange. J Geophys Res. doi: 10.1029/2010jc006685 Google Scholar
  24. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  25. Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullersig A, Willen U, Wyser K (2005) A 140-year simulation of European climate with the new version of the Rossby Centre regional atmospheric climate model (RCA3). Reports Meteorology and Climatology, vol 108, SMHI, SE-60176 Norrköping, Sweden, 54 ppGoogle Scholar
  26. Krichak SO, Kishcha P, Alpert P (2002) Decadal trends of main Eurasian oscillations and the Eastern Mediterranean precipitation. Theor Appl Climatol 72:209–220. doi: 10.1007/s007040200021 CrossRefGoogle Scholar
  27. Lascaratos A, Roether W, Nittis K, Klein B (1999) Recent changes in deep water formation and spreading in the eastern Mediterranean Sea: a review. Prog Oceanogr 44:5–36. doi: 10.1016/S0079-6611(99)00019-1 CrossRefGoogle Scholar
  28. Lenderink G, van der Hurk B, van Meijgaard E, van Ulden A, Cujipers H (2003) Simulation of present day climate in RACMO2: first results and model developments. Technical report no 252, KNMI, 24 ppGoogle Scholar
  29. Madec G, Chartier M, Delecluse P, Crepon M (1991) A 3-dimensional numerical study of deep-water formation in the Northwestern Mediterranean-Sea. J Phys Oceanogr 21:1349–1371CrossRefGoogle Scholar
  30. Mariotti A (2010) Recent changes in the Mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Climate 23:1513–1525. doi: 10.1175/2009jcli3251.1 CrossRefGoogle Scholar
  31. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706. doi: 10.1175/1520-0493(1982)110<0699:Seiteo>2.0.Co;2 CrossRefGoogle Scholar
  32. OrtizBevia MJ, Alvarez-Garcia FJ, de Elvira AR, Liguori G, Carretero JH (2012) The Western Mediterranean summer variability and its feedbacks. Clim Dynam 39:3103–3120. doi: 10.1007/s00382-012-1409-x CrossRefGoogle Scholar
  33. Papadopoulos VP, Josey SA, Bartzokas A, Somot S, Ruiz S, Drakopoulou P (2012a) Large-scale atmospheric circulation favoring deep- and intermediate-water formation in the Mediterranean Sea. J Climate 25:6079–6091. doi: 10.1175/Jcli-D-11-00657.1 CrossRefGoogle Scholar
  34. Papadopoulos VP, Kontoyiannis H, Ruiz S, Zarokanellos N (2012b) Influence of atmospheric circulation on turbulent air-sea heat fluxes over the Mediterranean Sea during winter. J Geophys Res-Oceans. doi: 10.1029/2011jc007455 Google Scholar
  35. Plummer D, Caya D, Coté H, Frigon A, Biner S, Giguère M, Paquin D, Harvey R, de Elia R (2006) Climate and climate change over North America as simulated by the Canadian Regional Climate Model. J Clim 19:3112–3132CrossRefGoogle Scholar
  36. Rahmstorf S (1996) On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim Dynam 12:799–811. doi: 10.1007/S003820050144 CrossRefGoogle Scholar
  37. Rahmstorf S (1998) Influence of Mediterranean Outflow on climate Eos. Trans Am Geophys Union 79:281–282. doi: 10.1029/98EO00208 CrossRefGoogle Scholar
  38. Radu R, Déqué M, Somot S (2008) Spectral nudging in a spectral regional climate model. Tellus A 60:898–910CrossRefGoogle Scholar
  39. Roether W et al (1996) Recent changes in eastern Mediterranean deep waters. Science 271:333–335CrossRefGoogle Scholar
  40. Roether W, Klein B, Manca BB, Theocharis A, Kioroglou S (2007) Transient Eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Prog Oceanogr 74:540–571. doi: 10.1016/j.pocean.2007.001 CrossRefGoogle Scholar
  41. Ruiz S, Gomis D, Sotillo MG, Josey SA (2008) Characterization of surface heat fluxes in the Mediterranean Sea from a 44-year high-resolution atmospheric data set. Global Planet Change 63:258–274. doi: 10.1016/j.gloplacha.2007.12.002 CrossRefGoogle Scholar
  42. Sanchez E, Gallardo C, Gaertner MA, Arribas A, Castro M (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Plan Chan 44:163–180CrossRefGoogle Scholar
  43. Sanchez-Gomez E, Somot S, Josey SA, Dubois C, Elguindi N, Déqué M (2011) Evaluation of Mediterranean Sea water and heat budgets simulated by an ensemble of high resolution regional climate models. Clim Dynam 37:2067–2086. doi: 10.1007/s00382-011-1012-6 CrossRefGoogle Scholar
  44. Schroeder K, Ribotti A, Borghini M, Sorgente R, Perilli A, Gasparini GP (2008) An extensive western Mediterranean deep water renewal between 2004 and 2006. Geophys Res Lett. doi: 10.1029/2008gl035146 Google Scholar
  45. Simmons AJ, Wallace JM, Branstator GW (1983) Barotropic wave-propagation and instability, and atmospheric teleconnection patterns. J Atmos Sci 40:1363–1392. doi: 10.1175/1520-0469(1983)040<1363:Bwpaia>2.0.Co;2 CrossRefGoogle Scholar
  46. Skliris N, Sofianos S, Gkanasos A, Mantziafou A, Vervatis V, Axaopoulos P, Lascaratos A (2011) Decadal scale variability of sea surface temperature in the Mediterranean Sea in relation to atmospheric variability. Ocean Dyn 62:13–30. doi: 10.1007/s10236-011-0493-5 CrossRefGoogle Scholar
  47. Theocharis A, Nittis K, Kontoyiannis K, Papageorgiou E, Balopoulos E (1999) Climatic changes in the Aegean Sea influence the Eastern Mediterranean thermohaline circulation (1986–1997). Geophys Res Lett 26:1617–1620CrossRefGoogle Scholar
  48. Uppala SM et al (2005) The ERA-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012CrossRefGoogle Scholar
  49. Vickers D, Mahrt L (2006) Evaluation of the air-sea bulk formula and sea-surface temperature variability from observations. J Geophys Res-Oceans. doi: 10.1029/2005jc003323 Google Scholar
  50. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812. doi: 10.1175/1520-0493(1981)109<0784:Titghf>2.0.Co;2 CrossRefGoogle Scholar
  51. Woodruff SD, Diaz HF, Elms JD, Worley SJ (1998) COADS release 2 and metadata enhancements of marine surface flux fields. Phys Chem Earth 23:517–526CrossRefGoogle Scholar
  52. Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res-Atmos. doi: 10.1029/2003jd004457 Google Scholar
  53. Zveryaev II, Hannachi AA (2011) Interannual variability of Mediterranean evaporation and its relation to regional climate. Clim Dynam 38:495–512. doi: 10.1007/s00382-011-1218-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Giovanni Liguori
    • 1
    • 2
    Email author
  • Emanuele Di Lorenzo
    • 1
  • William Cabos
    • 2
  1. 1.School of Earth and Atmospherics SciencesGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Departamento de FísicaUniversidad de AlcaláAlcalá de HenaresSpain

Personalised recommendations