Advertisement

Climate Dynamics

, Volume 51, Issue 3, pp 779–797 | Cite as

Climatology of observed rainfall in Southeast France at the Regional Climate Model scales

  • Stéphanie Froidurot
  • Gilles Molinié
  • Arona Diedhiou
Article

Abstract

In order to provide convenient data to assess rainfall simulated by Regional Climate Models, a spatial database (hereafter called K-REF) has been designed. This database is used to examine climatological features of rainfall in Southeast France, a study region characterized by two mountain ranges of comparable altitude (the Cévennes and the Alps foothill) on both sides of the Rhône valley. Hourly records from 1993 to 2013 have been interpolated to a \(0.1^{\circ } \times 0.1^{\circ }\) latitude–longitude regular grid and accumulated over 3-h periods in K-REF. The assessment of K-REF relatively to the SAFRAN daily rainfall reanalysis indicates consistent patterns and magnitudes between the two datasets even though K-REF fields are smoother. A multi-scale analysis of the occurrence and non-zero intensity of rainfall is performed and shows that the maps of the 50th and 95th percentiles of 3- and 24-h rain intensity highlight different patterns. The maxima of the 50th and 95th percentiles are located over plain and mountainous areas respectively. Moreover, the location of these maxima is not the same for the 3- and 24-h intensities. To understand these differences between median and intense rainfall on the one hand and between the 3- and 24-h rainfall on the other hand, we analyze the statistical distributions and the space-time structure of occurrence and intensity of the 3-h rainfall in two classes of days, defined as median and intense. This analysis illustrates the influence of two factors on the triggering and the intensity of rain in the region: the solar cycle and the orography. The orographic forcing appears to be quite different for the two ranges of the domain and is much more pronounced over the Cévennes.

Keywords

Precipitation Multi-scale climatology Spatial analysis Mountainous mediterranean region MED-CORDEX HyMeX 

Notes

Acknowledgments

This work is part of the Med-CORDEX initiative (www.medcordex.eu) supported by the HYdrological cycle in The Mediterranean EXperiment (HyMeX) programme (www.hymex.org). This research has received funding from the French National Research Agency (ANR) project REMEMBER (contract ANR-12-SENV-001). The rainfall data were provided by Météo-France, in the framework of the OHM-CV observation service funded by CNRS/INSU and Université Grenoble Alpes/OSUG.

References

  1. Alpert P (1986) Mesoscale indexing of the distribution of orographic precipitation over high mountains. J Clim Appl Meteorol 25(4):532–545CrossRefGoogle Scholar
  2. Alpert P, Shafir H (1989) Meso\(\gamma\)-scale distribution of orographic precipitation: numerical study and comparison with precipitation derived from radar measurements. J Appl Meteorol 28(10):1105–1117CrossRefGoogle Scholar
  3. Bastin G, Lorent B, Duqué C, Gevers M (1984) Optimal estimation of the average areal rainfall and optimal selection of rain gauge locations. Water Resour Res 20(4):463–470. doi: 10.1029/WR020i004p00463 CrossRefGoogle Scholar
  4. Bastin S, Drobinski P, Dabas A, Delville P, Reitebuch O, Werner C (2005) Impact of the Rhône and Durance valleys on sea-breeze circulation in the Marseille area. Atmos Res 74(1):303–328. doi: 10.1016/j.atmosres.2004.04.014 CrossRefGoogle Scholar
  5. Berne A, Delrieu G, Boudevillain B (2009) Variability of the spatial structure of intense Mediterranean precipitation. Adv Water Resour 32(7):1031–1042CrossRefGoogle Scholar
  6. Biasutti M, Yuter SE, Burleyson CD, Sobel AH (2012) Very high resolution rainfall patterns measured by TRMM precipitation radar: seasonal and diurnal cycles. Clim Dyn 39(1–2):239–258. doi: 10.1007/s00382-011-1146-6 CrossRefGoogle Scholar
  7. Boé J, Terray L, Habets F, Martin E (2007) Statistical and dynamical downscaling of the Seine basin climate for hydro-meteorological studies. Int J Clim 27(12):1643–1655. doi: 10.1002/joc.1602 CrossRefGoogle Scholar
  8. Ceresetti D, Molinié G, Creutin JD (2010) Scaling properties of heavy rainfall at short duration: a regional analysis. Water Resour Res 46(9):W09,531. doi: 10.1029/2009WR008603 CrossRefGoogle Scholar
  9. Ceresetti D, Anquetin S, Molinié G, Leblois E, Creutin JD (2012) Multiscale evaluation of extreme rainfall event predictions using severity diagrams. Weather Forecast 27(1):174–188. doi: 10.1175/WAF-D-11-00003.1 CrossRefGoogle Scholar
  10. Chardon J, Hingray B, Favre AC, Autin P, Gailhard J, Zin I, Obled C (2014) Spatial similarity and transferability of analog dates for precipitation downscaling over France. J Clim 27(13):5056–5074. doi: 10.1175/JCLI-D-13-00464.1 CrossRefGoogle Scholar
  11. Chen CT, Knutson T (2008) On the verification and comparison of extreme rainfall indices from climate models. J Clim 21(7):1605–1621. doi: 10.1175/2007JCLI1494.1 CrossRefGoogle Scholar
  12. Chilès JP, Delfiner P (1999) Geostatistics. Modeling Spatial Uncertainty, Wiley-Interscience Publication Edition. Wiley Series in Probability and Statistics, Wiley, New YorkGoogle Scholar
  13. Creutin JD, Obled C (1982) Objective analyses and mapping techniques for rainfall fields: an objective comparison. Water Resour Res 18(2):413–431. doi: 10.1029/WR018i002p00413 CrossRefGoogle Scholar
  14. Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19(18):4605–4630. doi: 10.1175/JCLI3884.1 CrossRefGoogle Scholar
  15. Dai A, Giorgi F, Trenberth KE (1999) Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J Geophys Res Atmos 104(D6):6377–6402. doi: 10.1029/98JD02720 CrossRefGoogle Scholar
  16. Dai A, Lin X, Hsu KL (2007) The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes. Clim Dyn 29(7–8):727–744. doi: 10.1007/s00382-007-0260-y CrossRefGoogle Scholar
  17. De Michele C, Kottegoda NT, Rosso R (2001) The derivation of areal reduction factor of storm rainfall from its scaling properties. Water Resour Res 37(12):3247–3252. doi: 10.1029/2001WR000346 CrossRefGoogle Scholar
  18. Delhomme JP (1978) Kriging in the hydrosciences. Adv Water Resour 1(5):251–266. doi: 10.1016/0309-1708(78)90039-8 CrossRefGoogle Scholar
  19. Delrieu G, Ducrocq V, Gaume E, Nicol J, Payrastre O, Yates E, Kirstetter PE, Andrieu H, Ayral PA, Bouvier C, Creutin JD, Livet M, Anquetin S, Lang M, Neppel L, Obled C, Parent-du-Châtelet J, Saulnier GM, Walpersdorf A, Wobrock W (2005) The catastrophic flash-flood event of 8–9 september 2002 in the Gard region, France: A first case study for the Cévennes-Vivarais mediterranean hydrometeorological observatory. J Hydrometeorol 6(1):34–52CrossRefGoogle Scholar
  20. Drobinski P, Bastin S, Dabas A, Delville P, Reitebuch O (2006) Variability of three-dimensional sea breeze structure in southern France: observations and evaluation of empirical scaling laws. Ann Geophys 24(7):1783–1799CrossRefGoogle Scholar
  21. Ducrocq V, Nuissier O, Ricard D, Lebeaupin C, Thouvenin T (2008) A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors. Q J R Meteorol Soc 134(630):131–145. doi: 10.1002/qj.199 CrossRefGoogle Scholar
  22. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou S, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, cambridge university press edn, Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  23. Frei C, Schär C (1998) A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int J Climatol 18(8):873–900CrossRefGoogle Scholar
  24. Fresnay S, Hally A, Garnaud C, Richard E, Lambert D (2012) Heavy precipitation events in the Mediterranean: sensitivity to cloud physics parameterisation uncertainties. Nat Hazards Earth Syst Sci 12(8):2671–2688. doi: 10.5194/nhess-12-2671-2012 CrossRefGoogle Scholar
  25. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33(L08):707. doi: 10.1029/2006GL025734 Google Scholar
  26. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  27. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ (WMO) Bull 58(3):175Google Scholar
  28. Giorgi F, Im ES, Coppola E, Diffenbaugh NS, Gao XJ, Mariotti L, Shi Y (2011) Higher Hydroclimatic Intensity with Global Warming. J Clim 24(20):5309–5324. doi: 10.1175/2011JCLI3979.1 CrossRefGoogle Scholar
  29. Godart A, Anquetin S, Leblois E (2009) Rainfall regimes associated with banded convection in the Cévennes-Vivarais area. Meteorol Atmos Phys 103(1–4):25–34. doi: 10.1007/s00703-008-0326-3 CrossRefGoogle Scholar
  30. Godart A, Leblois E, Anquetin S, Freychet N (2010) Analysis of the relationship between banded orographic convection and atmospheric properties using factorial discriminant analysis and neural networks. J Appl Meteorol Climatol 49(4):646–663. doi: 10.1175/2009JAMC2217.1 CrossRefGoogle Scholar
  31. Godart A, Anquetin S, Leblois E, Creutin JD (2011) The contribution of orographically driven banded precipitation to the rainfall climatology of a Mediterranean region. J Appl Meteorol Climatol 50(11):2235–2246. doi: 10.1175/JAMC-D-10-05016.1 CrossRefGoogle Scholar
  32. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A european daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res Atmos 113(D20):119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  33. Hewitson BC, Crane RG (1996) Climate downscaling: techniques and application. Clim Res 07(2):85–95. doi: 10.3354/cr007085 CrossRefGoogle Scholar
  34. Hill CM, Fitzpatrick PJ, Corbin JH, Lau YH, Bhate SK (2010) Summertime precipitation regimes associated with the sea breeze and land breeze in Southern Mississippi and Eastern Louisiana. Weather Forecast 25(6):1755–1779. doi: 10.1175/2010WAF2222340.1 CrossRefGoogle Scholar
  35. Huffman GJ, Adler RF, Morrissey MM, Bolvin DT, Curtis S, Joyce R, McGavock B, Susskind J (2001) Global precipitation at one-degree daily resolution from multisatellite observations. J Hydrometeorol 2(1):36–50CrossRefGoogle Scholar
  36. Johnson GL, Hanson CL (1995) Topographic and atmospheric influences on precipitation variability over a mountainous watershed. J Appl Meteorol 34(1):68–87. doi: 10.1175/1520-0450-34.1.68 CrossRefGoogle Scholar
  37. Koutsoyiannis D (1997) Statistical hydrology. Dep Water Resour Hydraul and Maritime Eng Natl Tech Univ of Athens, Athens, GreeceGoogle Scholar
  38. Lebel T, Bastin G, Obled C, Creutin JD (1987) On the accuracy of areal rainfall estimation: a case study. Water Resour Res 23(11):2123–2134. doi: 10.1029/WR023i011p02123 CrossRefGoogle Scholar
  39. Leblois E, Creutin JD (2013) Space-time simulation of intermittent rainfall with prescribed advection field: adaptation of the turning band method: Simulation of Rainfall with Advection Field. Water Resour Res 49(6):3375–3387. doi: 10.1002/wrcr.20190 CrossRefGoogle Scholar
  40. Lepioufle JM, Leblois E, Creutin JD (2012) Variography of rainfall accumulation in presence of advection. J Hydrol 464–465:494–504. doi: 10.1016/j.jhydrol.2012.07.041 CrossRefGoogle Scholar
  41. Mandapaka PV, Germann U, Panziera L (2013) Diurnal cycle of precipitation over complex Alpine orography: inferences from high-resolution radar observations. Q J R Meteorol Soc 139(673):1025–1046. doi: 10.1002/qj.2013 CrossRefGoogle Scholar
  42. Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M, Brienen S, Rust HW, Sauter T, Themel M, Venema VKC, Chun KP, Goodess CM, Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Reviews of Geophysics 48(3):RG3003, doi: 10.1029/2009RG000314
  43. Mariotti A, Pan Y, Zeng N, Alessandri A (2015) Long-term climate change in the Mediterranean region in the midst of decadal variability. Clim Dyn 44(5–6):1437–1456. doi: 10.1007/s00382-015-2487-3 CrossRefGoogle Scholar
  44. Mearns LO, Bogardi I, Giorgi F, Matyasovszky I, Palecki M (1999) Comparison of climate change scenarios generated from regional climate model experiments and statistical downscaling. J Geophys Res Atmos 104(D6):6603–6621. doi: 10.1029/1998JD200042 CrossRefGoogle Scholar
  45. Michaud J, Auvine BA, Penalba OC (1995) Spatial and elevational variations of summer rainfall in the southwestern United States. J Appl Meteorol 34(12):2689–2703CrossRefGoogle Scholar
  46. Miniscloux F, Creutin JD, Anquetin S (2001) Geostatistical analysis of orographic rainbands. J Appl Meteorol 40(11):1835–1854CrossRefGoogle Scholar
  47. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25(6):693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  48. Molinié G, Ceresetti D, Anquetin S, Creutin JD, Boudevillain B (2012) Rainfall regime of a mountainous mediterranean region: statistical analysis at short time steps. J Appl Meteorol Climatol 51(3):429–448. doi: 10.1175/2011JAMC2691.1 CrossRefGoogle Scholar
  49. Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J Clim 16(10):1456–1475CrossRefGoogle Scholar
  50. Nikulin G, Jones C, Giorgi F, Asrar G, Büchner M, Cerezo-Mota R, Christensen OB, Déqué M, Fernandez J, Hänsler A, van Meijgaard E, Samuelsson P, Sylla MB, Sushama L (2012) Precipitation climatology in an ensemble of CORDEX-Africa regional climate simulations. J Clim 25(18):6057–6078. doi: 10.1175/JCLI-D-11-00375.1 CrossRefGoogle Scholar
  51. Nuissier O, Ducrocq V, Ricard D, Lebeaupin C, Anquetin S (2008) A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients. Q J R Meteorol Soc 134(630):111–130. doi: 10.1002/qj.200 CrossRefGoogle Scholar
  52. Oki T, Musiake K (1994) Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J Appl Meteorol 33(12):1445–1463CrossRefGoogle Scholar
  53. Pielke RA (1974) A three-dimensional numerical model of the sea breezes over South Florida. Mon Weather Rev 102(2):115–139CrossRefGoogle Scholar
  54. Quintana-Seguí P, Le Moigne P, Durand Y, Martin E, Habets F, Baillon M, Canellas C, Franchisteguy L, Morel S (2008) Analysis of near-surface atmospheric variables: validation of the SAFRAN analysis over france. J Appl Meteorol Climatol 47(1):92–107. doi: 10.1175/2007JAMC1636.1 CrossRefGoogle Scholar
  55. Quintana-Seguí P, Ribes A, Martin E, Habets F, Boé J (2010) Comparison of three downscaling methods in simulating the impact of climate change on the hydrology of Mediterranean basins. J Hydrol 383(1–2):111–124. doi: 10.1016/j.jhydrol.2009.09.050 CrossRefGoogle Scholar
  56. Quintana Seguí P (2008) Simulation hydrologique en région méditerranéenne avec SAFRAN-ISBA-MODCOU. Amélioration de la physique et évaluation des risques dans le cadre du changement climatique. PhD thesis, Université Paul Sabatier, Toulouse, FranceGoogle Scholar
  57. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Am Meteorol Soc 89(3):303–311. doi: 10.1175/BAMS-89-3-303 CrossRefGoogle Scholar
  58. Ricard D (2002) Initialisation et assimilation de données à méso-échelle pour la prévision à haute résolution des pluies intenses de la région Cévennes-Vivarais. PhD thesis, Université Paul Sabatier-Toulouse III, FranceGoogle Scholar
  59. Ruin I, Creutin JD, Anquetin S, Lutoff C (2008) Human exposure to flash floods-Relation between flood parameters and human vulnerability during a storm of September 2002 in southern France. J Hydrol 361(1–2):199–213. doi: 10.1016/j.jhydrol.2008.07.044 CrossRefGoogle Scholar
  60. Ruti PM, Somot S, Giorgi F, Dubois C, Flaounas E, Obermann A, Dell’Aquila A, Pisacane G, Harzallah A, Lombardi E, Ahrens B, Akhtar N, Alias A, Arsouze T, Aznar R, Bastin S, Bartholy J, Béranger K, Beuvier J, Bouffies-Cloché S, Brauch J, Cabos W, Calmanti S, Calvet JC, Carillo A, Conte D, Coppola E, Djurdjevic V, Drobinski P, Elizalde-Arellano A, Gaertner M, Galàn P, Gallardo C, Gualdi S, Goncalves M, Jorba O, Jordà G, L’Heveder B, Lebeaupin-Brossier C, Li L, Liguori G, Lionello P, Maciàs D, Nabat P, Onol B, Raikovic B, Ramage K, Sevault F, Sannino G, Struglia M, Sanna A, Torma C, Vervatis V (2015) MED-CORDEX initiative for Mediterranean climate studies. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-14-00176.1
  61. Sénési S, Bougeault P, Chèze JL, Cosentino P, Thepenier RM (1996) The Vaison-La-Romaine Flash flood: mesoscale analysis and predictability issues. Weather Forecast 11(4):417–442CrossRefGoogle Scholar
  62. Skelly WC, Henderson-Sellers A (1996) Grid box or grid point: what type of data do GCMs deliver to climate impact researchers? Int J Climatol 16(10):1079–1086CrossRefGoogle Scholar
  63. Vidal JP, Martin E, Franchistéguy L, Baillon M, Soubeyroux JM (2010) A 50-year high-resolution atmospheric reanalysis over France with the Safran system. Int J Climatol 30(11):1627–1644. doi: 10.1002/joc.2003 CrossRefGoogle Scholar
  64. Vié B, Molinié G, Nuissier O, Vincendon B, Ducrocq V, Bouttier F, Richard E (2012) Hydro-meteorological evaluation of a convection-permitting ensemble prediction system for Mediterranean heavy precipitating events. Nat Hazards Earth Syst Sci 12(8):2631–2645. doi: 10.5194/nhess-12-2631-2012 CrossRefGoogle Scholar
  65. Xie P, Arkin PA (1997) Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull Am Meteorol Soc 78(11):2539–2558CrossRefGoogle Scholar
  66. Yates E (2006) Convection en région Cévennes-Vivarais: Etude de données pluviométriques, simulations numériques et validation multi-échelles. PhD thesis, Institut National Polytechnique de Grenoble, FranceGoogle Scholar
  67. Yates E, Anquetin S, Ducrocq V, Creutin JD, Ricard D, Chancibault K (2006) Point and areal validation of forecast precipitation fields. Meteorol Appl 13(01):1–20. doi: 10.1017/S1350482705001921 CrossRefGoogle Scholar
  68. Zepeda-Arce J, Foufoula-Georgiou E, Droegemeier KK (2000) Space-time rainfall organization and its role in validating quantitative precipitation forecasts. J Geophys Res Atmos 105(D8):10,129–10,146. doi: 10.1029/1999JD901087 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Stéphanie Froidurot
    • 1
  • Gilles Molinié
    • 1
  • Arona Diedhiou
    • 1
  1. 1.Laboratoire d’études des Transferts en Hydrologie et Environnement (LTHE)Université Grenoble Alpes/IRD/CNRSGrenobleFrance

Personalised recommendations