Climate Dynamics

, Volume 48, Issue 1–2, pp 631–647 | Cite as

Modulation of western North Pacific tropical cyclone activity by the Atlantic Meridional Mode

  • Wei Zhang
  • Gabriel A. Vecchi
  • Gabriele Villarini
  • Hiroyuki Murakami
  • Anthony Rosati
  • Xiaosong Yang
  • Liwei Jia
  • Fanrong Zeng
Article

Abstract

This study examines the year-to-year modulation of the western North Pacific (WNP) tropical cyclones (TC) activity by the Atlantic Meridional Mode (AMM) using both observations and the Geophysical Fluid Dynamics Laboratory Forecast-oriented Low Ocean Resolution Version of CM2.5 (FLOR) global coupled model. 1. The positive (negative) AMM phase suppresses (enhances) WNP TC activity in observations. The anomalous occurrence of WNP TCs results mainly from changes in TC genesis in the southeastern part of the WNP. 2. The observed responses of WNP TC activity to the AMM are connected to the anomalous zonal vertical wind shear (ZVWS) caused by AMM-induced changes to the Walker circulation. During the positive AMM phase, the warming in the North Atlantic induces strong descending flow in the tropical eastern and central Pacific, which intensifies the Walker cell in the WNP. The intensified Walker cell is responsible for the suppressed (enhanced) TC genesis in the eastern (western) part of the WNP by strengthening (weakening) ZVWS. 3. The observed WNPTC–AMM linkage is examined by the long-term control and idealized perturbations experiment with FLOR-FA. A suite of sensitivity experiments strongly corroborate the observed WNPTC–AMM linkage and underlying physical mechanisms.

Keywords

Tropical cyclone Western North Pacific Atlantic Meridional Mode 

Notes

Acknowledgments

The authors are grateful to Jim Kossin and an anonymous reviewer for their insightful comments that improve this paper. The authors thank Lakshmi Krishnamurthy and Honghai Zhang for their comments that improve an earlier version of this manuscript. This material is based in part upon work supported by the National Science Foundation under Grants AGS-1262091 and AGS-1262099.

References

  1. Camargo SJ, Sobel AH (2005) Western North Pacific tropical cyclone intensity and ENSO. J Clim 18:2996–3006CrossRefGoogle Scholar
  2. Camargo SJ, Emanuel KA, Sobel AH (2007a) Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J Clim 20:4819–4834CrossRefGoogle Scholar
  3. Camargo SJ, Sobel AH, Barnston AG, Emanuel KA (2007b) Tropical cyclone genesis potential index in climate models. Tellus A 59:428–443CrossRefGoogle Scholar
  4. Carton JA, Cao X, Giese BS, Da Silva AM (1996) Decadal and interannual SST variability in the tropical Atlantic Ocean. J Phys Oceanogr 26:1165–1175CrossRefGoogle Scholar
  5. Chan JCL (1985) Tropical cyclone activity in the Northwest Pacific in relation to the El Niño Southern Oscillation phenomenon. Mon Weather Rev 113:599–606CrossRefGoogle Scholar
  6. Chan JCL (2000) Tropical cyclone activity over the western North Pacific associated with El Niño and La Niña events. J Clim 13:2960–2972CrossRefGoogle Scholar
  7. Chan JCL, Liu KS (2004) Global warming and western North Pacific typhoon activity from an observational perspective. J Clim 17:4590–4602CrossRefGoogle Scholar
  8. Chan JCL, Shi J, Liu KS (2001) Improvements in the seasonal forecasting of tropical cyclone activity over the Western North Pacific. Weather Forecast 16:491–498CrossRefGoogle Scholar
  9. Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air–sea interactions. Nature 385:516–518CrossRefGoogle Scholar
  10. Chiang JCH, Vimont DJ (2004) Analogous Pacific and Atlantic Meridional Modes of tropical atmosphere–ocean variability*. J Clim 17:4143–4158CrossRefGoogle Scholar
  11. Chiang JCH, Kushnir Y, Giannini A (2002) Deconstructing Atlantic intertropical convergence zone variability: influence of the local cross-equatorial sea surface temperature gradient and remote forcing from the eastern equatorial Pacific. J Geophys Res Atmos 107:ACL 3-1–ACL 3-19CrossRefGoogle Scholar
  12. Choi Y, Ha K-J, Ho C-H, and Chung C (2015) Interdecadal change in typhoon genesis condition over the western North Pacific. Clim Dyn 45:3243–3255CrossRefGoogle Scholar
  13. Delworth TL, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V, Beesley JA, Cooke WF, Dixon KW, Dunne J, Dunne KA, Durachta JW, Findell KL, Ginoux P, Gnanadesikan A, Gordon CT, Griffies SM, Gudgel R, Harrison MJ, Held IM, Hemler RS, Horowitz LW, Klein SA, Knutson TR, Kushner PJ, Langenhorst AR, Lee H-C, Lin S-J, Lu J, Malyshev SL, Milly PCD, Ramaswamy V, Russell J, Schwarzkopf MD, Shevliakova E, Sirutis JJ, Spelman MJ, Stern WF, Winton M, Wittenberg AT, Wyman B, Zeng F, Zhang R (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:643–674CrossRefGoogle Scholar
  14. Delworth TL, Rosati A, Anderson W, Adcroft AJ, Balaji V, Benson R, Dixon K, Griffies SM, Lee H-C, Pacanowski RC, Vecchi GA, Wittenberg AT, Zeng F, Zhang R (2012) Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J Clim 25:2755–2781CrossRefGoogle Scholar
  15. Deser C, Wallace JM (1987) El Niño events and their relation to the Southern Oscillation: 1925–1986. J Geophys Res Oceans 92:14189–14196CrossRefGoogle Scholar
  16. Doi T, Vecchi GA, Rosati AJ, Delworth TL (2013) Response to CO2 doubling of the Atlantic hurricane main development region in a high-resolution climate model. J Clim 26:4322–4334CrossRefGoogle Scholar
  17. Du Y, Yang L, Xie S-P (2010) Tropical Indian Ocean influence on northwest Pacific tropical cyclones in summer following strong El Niño*. J Clim 24:315–322CrossRefGoogle Scholar
  18. Emanuel KA and Nolan D (2004) Tropical cyclone activity and the global climate system. Preprints, 26th conference on hurricanes and tropical meteorology. American Meteorological Society A, Miami, FLGoogle Scholar
  19. England MH, McGregor S, Spence P, Meehl GA, Timmermann A, Cai W, Gupta AS, McPhaden MJ, Purich A, Santoso A (2014) Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat Clim Change 4:222–227CrossRefGoogle Scholar
  20. Fan K, Wang H (2009) A new approach to forecasting typhoon frequency over the western North Pacific. Weather Forecast 24:974–986CrossRefGoogle Scholar
  21. Girishkumar MS, Thanga Prakash VP, Ravichandran M (2014) Influence of Pacific decadal oscillation on the relationship between ENSO and tropical cyclone activity in the Bay of Bengal during October–December. Clim Dyn 44:3469–3479CrossRefGoogle Scholar
  22. Gray WM (1979) Hurricanes: their formation, structure and likely role in the tropical circulation. Meteorol Trop Oceans 77:155–218Google Scholar
  23. Grossmann I, Klotzbach PJ (2009) A review of North Atlantic modes of natural variability and their driving mechanisms. J Geophys Res 114:D24107. doi:10.1029/2009JD012728
  24. Ham Y-G, Kug J-S, Park J-Y, Jin F-F (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6:112–116CrossRefGoogle Scholar
  25. He H, Yang J, Gong D, Mao R, Wang Y, Gao M (2015) Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Clim Dyn 45:3317–3329CrossRefGoogle Scholar
  26. Huo L, Guo P, Hameed SN, Jin D (2015) The role of tropical Atlantic SST anomalies in modulating western North Pacific tropical cyclone genesis. Geophys Res Lett 42:2378–2484CrossRefGoogle Scholar
  27. Jia L, Yang X, Vecchi GA, Gudgel RG, Delworth TL, Rosati A, Stern WF, Wittenberg AT, Krishnamurthy L, Zhang S, Msadek R, Kapnick S, Underwood S, Zeng F, Anderson WG, Balaji V, Dixon K (2015) Improved seasonal prediction of temperature and precipitation over land in a high-resolution GFDL climate model. J Clim 28:2044–2062CrossRefGoogle Scholar
  28. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  29. Kang I-S, No H-H, Kucharski F (2014) ENSO amplitude modulation associated with the mean SST changes in the tropical central Pacific induced by Atlantic Multidecadal Oscillation. J Clim 27:7911–7920CrossRefGoogle Scholar
  30. Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2 Biases and homogenization. J Geophys Res Atmos 116:D14104CrossRefGoogle Scholar
  31. Kim H-S, Vecchi GA, Knutson TR, Anderson WG, Delworth TL, Rosati A, Zeng F, Zhao M (2014) Tropical cyclone simulation and response to CO2 doubling in the GFDL CM2.5 high-resolution coupled climate model. J Clim 27:8034–8054CrossRefGoogle Scholar
  32. Klotzback PJ (2007) Recent developments in statistical prediction of seasonal Atlantic basin tropical cyclone activity. Tellus B Dyn Meteorol Oceanogr 59:511–518CrossRefGoogle Scholar
  33. Knapp KR, Kruk MC, Levinson DH, Diamond HJ, Neumann CJ (2010) The international best track archive for climate stewardship (IBTrACS). Bull Am Meteorol Soc 91:363–376CrossRefGoogle Scholar
  34. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn Ser II 93:5–48CrossRefGoogle Scholar
  35. Kossin JP, Vimont DJ (2007) A more general framework for understanding Atlantic hurricane variability and trends. Bull Am Meteorol Soc 88:1767–1781CrossRefGoogle Scholar
  36. Kucharski F, Kang IS, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38:L03702. doi:10.1029/2010GL046248
  37. Kucharski F et al (2016) Atlantic forcing of Pacific decadal variability. Clim Dyn. doi:10.1007/s00382-015-2705-z Google Scholar
  38. Lee HS, Yamashita T, Mishima T (2012) Multi-decadal variations of ENSO, the Pacific Decadal Oscillation and tropical cyclones in the western North Pacific. Prog Oceanogr 105:67–80CrossRefGoogle Scholar
  39. Li X, Yang S, Wang H, Jia X, Kumar A (2013) A dynamical-statistical forecast model for the annual frequency of western Pacific tropical cyclones based on the NCEP Climate Forecast System version 2. J Geophys Res Atmos 118:12061–12074CrossRefGoogle Scholar
  40. Li X, Xie S-P, Gille ST, Yoo C (2015) Atlantic-induced pan-tropical climate change over the past three decades. Nat Clim Change 6:275–279CrossRefGoogle Scholar
  41. Lin II, Chan JCL (2015) Recent decrease in typhoon destructive potential and global warming implications. Nat Commun 6:7182. doi:10.1038/ncomms8182 CrossRefGoogle Scholar
  42. Liu KS, Chan JCL (2012) Inactive period of western North pacific tropical cyclone activity in 1998–2011. J Clim 26:2614–2630CrossRefGoogle Scholar
  43. McGregor S, Timmermann A, Stuecker MF, England MH, Merrifield M, Jin F-F, Chikamoto Y (2014) Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nat Clim Change 4:888–892CrossRefGoogle Scholar
  44. Mitchell CL (1932) West Indian hurricanes and other tropical cyclones of the North Atlantic Ocean. Mon Weather Rev 60:253CrossRefGoogle Scholar
  45. Murakami H, Vecchi GA, Underwood S, Delworth T, Wittenberg AT, Anderson W, Chen J-H, Gudgel R, Harris L, Lin S-J, Zeng F (2015) Simulation and prediction of Category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J Clim 28:9058–9079CrossRefGoogle Scholar
  46. Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and south America. J Clim 9:2464–2479CrossRefGoogle Scholar
  47. Pielke R Jr, Gratz J, Landsea C, Collins D, Saunders M, Musulin R (2008) Normalized hurricane damage in the United States: 1900–2005. Nat Hazards Rev 9:29CrossRefGoogle Scholar
  48. Rappaport EN (2000) Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull Am Meteorol Soc 81:2065–2073CrossRefGoogle Scholar
  49. Servain J (1991) Simple climatic indices for the tropical Atlantic Ocean and some applications. J Geophys Res Oceans 96:15137–15146CrossRefGoogle Scholar
  50. Smirnov D, Vimont DJ (2011) Variability of the Atlantic Meridional Mode during the Atlantic hurricane season. J Clim 24:1409–1424CrossRefGoogle Scholar
  51. Smirnov D, Vimont DJ (2012) Extratropical forcing of tropical Atlantic variability during the boreal summer and fall. J Clim 25:2056–2076CrossRefGoogle Scholar
  52. Tu JY, Chou C, Chu PS (2009) The abrupt shift of typhoon activity in the vicinity of Taiwan and its association with western North Pacific-East Asian climate change. J Clim 22:3617–3628CrossRefGoogle Scholar
  53. Vecchi GA, Soden BJ (2007) Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450:1066–1070CrossRefGoogle Scholar
  54. Vecchi GA, Delworth T, Gudgel R, Kapnick S, Rosati A, Wittenberg AT, Zeng F, Anderson W, Balaji V, Dixon K, Jia L, Kim HS, Krishnamurthy L, Msadek R, Stern WF, Underwood SD, Villarini G, Yang X, Zhang S (2014) On the seasonal forecasting of regional tropical cyclone activity. J Clim 27:7994–8016CrossRefGoogle Scholar
  55. Vimont DJ, Kossin JP (2007) The Atlantic Meridional Mode and hurricane activity. Geophys Res Lett 34:L07709CrossRefGoogle Scholar
  56. Vitart FD, Stockdale TN (2001) Seasonal forecasting of tropical storms using coupled GCM integrations. Mon Weather Rev 129:2521–2537CrossRefGoogle Scholar
  57. Wang B, Chan JCL (2002) How strong ENSO events affect tropical storm activity over the Western North Pacific. J Clim 15:1643–1658CrossRefGoogle Scholar
  58. Wu GX, Lau NC (1992) A GCM simulation of the relationship between tropical–storm formation and ENSO. Mon Weather Rev 120:958–977CrossRefGoogle Scholar
  59. Wu L, Wang C, Wang B (2015) Westward shift of western North Pacific tropical cyclogenesis. Geophys Res Lett 42:1537–1542CrossRefGoogle Scholar
  60. Xie S-P, Philander SGH (1994) A coupled ocean-atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A 46:340–350CrossRefGoogle Scholar
  61. Yang X, Vecchi GA, Gudgel RG, Delworth TL, Zhang S, Rosati A, Jia L, Stern WF, Wittenberg AT, Kapnick S, Msadek R, Underwood SD, Zeng F, Anderson W, Balaji V (2015) Seasonal predictability of extratropical storm tracks in GFDL’s high-resolution climate prediction model. J Clim 28:3592–3611CrossRefGoogle Scholar
  62. Yu J-Y, Kao P-K, Paek H, Hsu H-H, Hung C-W, Lu M-M, An S-I (2014) Linking emergence of the central Pacific El Niño to the Atlantic multidecadal oscillation. J Clim 28:651–662CrossRefGoogle Scholar
  63. Yu J, Li T, Tan Z, Zhu Z (2015) Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific. Clim Dyn 46:865–877CrossRefGoogle Scholar
  64. Zhan R, Wang Y, Lei X (2010) Contributions of ENSO and East Indian Ocean SSTA to the interannual variability of northwest Pacific tropical cyclone frequency*. J Clim 24:509–521CrossRefGoogle Scholar
  65. Zhan R, Wang Y, Tao L (2014) Intensified impact of East Indian Ocean SST anomaly on tropical cyclone genesis frequency over the western North Pacific. J Clim 27:8724–8739CrossRefGoogle Scholar
  66. Zhang R, Delworth TL (2007) Impact of the Atlantic multidecadal oscillation on North Pacific climate variability. Geophys Res Lett 34:L23708Google Scholar
  67. Zhang L, Zhao C (2015) Processes and mechanisms for the model SST biases in the North Atlantic and North Pacific: a link with the Atlantic meridional overturning circulation. J Adv Model Earth Syst 7:739–758CrossRefGoogle Scholar
  68. Zhang Q, Liu Q, Wu L (2009) Tropical cyclone damages in China 1983–2006. Bull Am Meteorol Soc 90:489–495CrossRefGoogle Scholar
  69. Zhang W, Graf HF, Leung Y, Herzog M (2012) Different El Niño types and tropical cyclone landfall in East Asia. J Clim 25:6510–6523CrossRefGoogle Scholar
  70. Zhang W, Leung Y, Min J (2013) North Pacific Gyre Oscillation and the occurrence of western North Pacific tropical cyclones. Geophys Res Lett 40(19):5205–5211CrossRefGoogle Scholar
  71. Zhang H, Deser C, Clement A, Tomas R (2014) Equatorial signatures of the Pacific meridional modes: dependence on the mean climate state. Geophys Res Lett 41:568–574. doi:10.1002/2013GL058842 CrossRefGoogle Scholar
  72. Zhang W, Leung Y, Fraedrich K (2015) Different El Niño types and intense typhoons in the Western North Pacific. Clim Dyn 11–12:2965–2977CrossRefGoogle Scholar
  73. Zhang W, Vecchi G, Murakami H, Villarini G, Jia L (2016a) The Pacific meridional mode and the occurrence of tropical cyclones in the Western North Pacific. J Clim 29:381–398CrossRefGoogle Scholar
  74. Zhang W, Vecchi GA, Murakami H, Delworth T, Wittenberg AT, Anderson W, Rosati A, Underwood S, Harris L, Gudgel R, Lin S-J, Villarini G, Chen J-H (2016b) Improved simulation of tropical cyclone responses to ENSO in the Western North Pacific in the high-resolution GFDL HiFLOR coupled climate model. J Clim 29:1391–1415CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Wei Zhang
    • 1
    • 2
    • 5
  • Gabriel A. Vecchi
    • 1
    • 2
  • Gabriele Villarini
    • 3
  • Hiroyuki Murakami
    • 1
    • 2
  • Anthony Rosati
    • 1
  • Xiaosong Yang
    • 1
    • 4
  • Liwei Jia
    • 1
    • 2
  • Fanrong Zeng
    • 1
  1. 1.National Oceanic and Atmospheric Administration/Geophysical Fluid Dynamics LaboratoryPrincetonUSA
  2. 2.Atmospheric and Oceanic Sciences ProgramPrinceton UniversityPrincetonUSA
  3. 3.IIHR-Hydroscience and EngineeringThe University of IowaIowa CityUSA
  4. 4.University Corporation for Atmospheric ResearchBoulderUSA
  5. 5.Key Laboratory of Meteorological Disaster, Ministry of Education, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological DisastersNanjing University of Information Science and TechnologyNanjingChina

Personalised recommendations