Advertisement

Climate Dynamics

, Volume 48, Issue 9–10, pp 2771–2795 | Cite as

Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns

  • S. Brands
  • J. M. Gutiérrez
  • D. San-Martín
Article

Abstract

A new atmospheric-river detection and tracking scheme based on the magnitude and direction of integrated water vapour transport is presented and applied separately over 13 regions located along the west coasts of Europe (including North Africa) and North America. Four distinct reanalyses are considered, two of which cover the entire twentieth-century: NOAA-CIRES Twentieth Century Reanalysis v2 (NOAA-20C) and ECMWF ERA-20C. Calculations are done separately for the OND and JFM-season and, for comparison with previous studies, for the ONDJFM-season as a whole. Comparing the AR-counts from NOAA-20C and ERA-20C with a running 31-year window looping through 1900–2010 reveals differences in the climatological mean and inter-annual variability which, at the start of the twentieth-century, are much more pronounced in western North America than in Europe. Correlating European AR-counts with the North Atlantic Oscillation (NAO) reveals a pattern reminiscent of the well-know precipitation dipole which is stable throughout the entire century. A similar analysis linking western North American AR-counts to the North Pacific index (NPI) is hampered by the aforementioned poor reanalysis agreement at the start of the century. During the second half of the twentieth-century, the strength of the NPI-link considerably varies with time in British Columbia and the Gulf of Alaska. Considering the period 1950–2010, AR-counts are then associated with other relevant large-scale circulation indices such as the East Atlantic, Scandinavian, Pacific-North American and West Pacific patterns (EA, SCAND, PNA and WP). Along the Atlantic coastline of the Iberian Peninsula and France, the EA-link is stronger than the NAO-link if the OND season is considered and the SCAND-link found in northern Europe is significant during both seasons. Along the west coast of North America, teleconnections are generally stronger during JFM in which case the NPI-link is significant in any of the five considered subregions, the PNA-link is significant in British Columbia and the Gulf of Alaska and the WP-link is so along the U.S. West Coast. During OND, these links are significant in the Gulf of Alaska only. If AR-counts are calculated upon persistent (instead of instantaneous) ARs, the link to the NAO weakens over the British Isles and western Iberia. For the experimental set-ups most closely mirroring those applied in Lavers et al. (J Geophys Res Atmos 117, 2012. doi: 10.1029/2012JD018027) and Ramos et al. (J Hydrometeorol 16(2):579–597, 2015. doi: 10.1175/JHM-D-14-0103.1), the NAO-links are completely or partly insignificant indicating that the inclusion of the persistence criterion notably alters the results. Visual support for the present study is provided by an exhaustive historical atmospheric river archive built at http://www.meteo.unican.es/atmospheric-rivers.

Keywords

Atmospheric rivers Reanalysis data Twentieth century Atmospheric circulation Europe North America 

Notes

Acknowledgments

The authors would like to thank Jorge Eiras-Barca, Daniel Garaboa, Dr. Gonzalo Miguez-Macho, Dr. David Lavers and two anonymous referees for their constructive criticism and helpful advice. They acknowledge the use of the climate indices provided by UCAR https://climatedataguide.ucar.edu/climate-data/ and the Climate Prediction Center http://www.cpc.ncep.noaa.gov/, the ECMWF ERA-20C and ERA-Interim reanalyses http://apps.ecmwf.int/datasets, the NOAA-CIRES twentieth Century Reanalysis version 2 http://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2.html and the NCEP/NCAR reanalysis 1 http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html. SB would like to thank the TRAGSA Group and the CSIC JAE-PREDOC programme for financial support.

Supplementary material

382_2016_3095_MOESM1_ESM.pdf (385 kb)
Fig. S01) As Fig. 9, but for de-trended data (pdf 385 KB)
382_2016_3095_MOESM2_ESM.pdf (399 kb)
Fig. S02) As Fig. 10, but for de-trended data (pdf 398 KB)

References

  1. Bao J, Michelson S, Neiman P, Ralph F, Wilczak J (2006) Interpretation of enhanced integrated water vapor bands associated with extratropical cyclones: their formation and connection to tropical moisture. Mon Weather Rev 134(4):1063–1080. doi: 10.1175/MWR3123.1 CrossRefGoogle Scholar
  2. Barnston A, Livezey R (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115(6):1083–1126. doi: 10.1175/1520-0493(1987) 115<1083:CSAPOL>2.0.CO;2 CrossRefGoogle Scholar
  3. Brands S, Gutierrez JM, Herrera S, Cofino AS (2012) On the use of reanalysis data for downscaling. J Clim 25(7):2517–2526. doi: 10.1175/JCLI-D-11-00251.1 CrossRefGoogle Scholar
  4. Broennimann S (2007) Impact of El Nino Southern oscillation on European climate. Rev Geophys 45(2). doi: 10.1029/2006RG000199
  5. Champion AJ, Allan RP, Lavers DA (2015) Atmospheric rivers do ot explain UK summer extreme rainfall. J Geophys Res Atmos. doi: 10.1002/2014JD022863
  6. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE Jr, Vose RS, Rutledge G, Bessemoulin P, Broennimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli O, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654, A):1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  7. Dacre HF, Clark PA, Martinez-Alvarado O, Stringer MA, Lavers DA (2015) How do atmospheric rivers form? Bull Am Meteorol Soc 96(8):1243–1255. doi: 10.1175/BAMS-D-14-00031.1 CrossRefGoogle Scholar
  8. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Koehler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656, Part a):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  9. Delworth T, Mann M (2000) Observed and simulated multidecadal variability in the Northern hemisphere. Clim Dyn 16(9):661–676. doi: 10.1007/s003820000075 CrossRefGoogle Scholar
  10. Deser C, Phillips A, Hurrell J (2004) Pacific interdecadal climate variability: linkages between the tropics and the North Pacific during boreal winter since 1900. J Clim 17(16):3109–3124. doi: 10.1175/1520-0442(2004)017<3109:PICVLB>2.0.CO;2 CrossRefGoogle Scholar
  11. Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) Atmospheric rivers, floods and the water resources of California. Water 3(2):445–478. doi: 10.3390/w3020445 CrossRefGoogle Scholar
  12. Eiras-Barca J, Brands S, Miguez-Macho G (2016) Seasonal variations in North Atlantic atmospheric river activity and associations with anomalous precipitation over the Iberian Atlantic Margin. J Geophys Res (in press). doi: 10.1002/2015JD023379
  13. Ferguson CR, Villarini G (2012) Detecting inhomogeneities in the Twentieth Century reanalysis over the central United States. J Geophys Res Atmos 117. doi: 10.1029/2011JD016988
  14. Garaboa D, Eiras-Barca J, Huhn F, Nuzuri VPM (2015) Langrangian coherent structures along atmospheric rivers. Chaos 25:063105. doi: 10.1063/1.4919768 CrossRefGoogle Scholar
  15. Gimeno L, Nieto R, Vázquez M, Lavers D (2014) Atmospheric rivers: a mini-review. Front Earth Sci. doi: 10.3389/feart.2014.00002
  16. Gimeno L, Stohl A, Trigo RM, Dominguez F, Yoshimura K, Yu L, Drumond A, Maria Duran-Quesada A, Nieto R (2012) Oceanic and terrestrial sources of continental precipitation. Rev Geophys 50. doi: 10.1029/2012RG000389
  17. Guan B, Waliser DE, Molotch NP, Fetzer EJ, Neiman PJ (2012) Does the Madden-Julian oscillation influence wintertime atmospheric rivers and snowpack in the Sierra Nevada? Mon Weather Rev 140(2):325–342. doi: 10.1175/MWR-D-11-00087.1 CrossRefGoogle Scholar
  18. Guan B, Waliser DE (2016) Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J Geophys Res 120 (in press). doi: 10.1002/2015JD024257
  19. Higgins R, Schemm J, Shi W, Leetmaa A (2000) Extreme precipitation events in the western United States related to tropical forcing. J Clim 13(4):793–820. doi: 10.1175/1520-0442(2000)013<0793:EPEITW>2.0.CO;2 CrossRefGoogle Scholar
  20. Hurrell J (1995) Decadal trends in the North-Atlantic oscillation—regional temperatures and precipitation. Science 269(5224):676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  21. Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) The North Atlantic oscillation: climate significance and environmental impact. Geophys Monogr Ser 134 (AGU, Washington, DC)Google Scholar
  22. Jiang T, Deng Y (2011) Downstream modulation of North Pacific atmospheric river activity by East Asian cold surges. Geophys Res Lett 38. doi: 10.1029/2011GL049462
  23. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  24. Kim J, Waliser DE, Neiman PJ, Guan B, Ryoo JM, Wick GA (2013) Effects of atmospheric river landfalls on the cold season precipitation in California. Clim Dyn 40(1–2):465–474. doi: 10.1007/s00382-012-1322-3 CrossRefGoogle Scholar
  25. Kim HM, Alexander MA (2015) ENSO’s modulation of water vapor transport over the Pacific-North American region. J Clim 28(9):3846–3856. doi: 10.1175/JCLI-D-14-00725.1 CrossRefGoogle Scholar
  26. Knippertz P, Wernli H, Glaeser G (2013) A global climatology of tropical moisture exports. J Clim 26(10):3031–3045. doi: 10.1175/JCLI-D-12-00401.1 CrossRefGoogle Scholar
  27. Knippertz P, Wernli H (2010) A Lagrangian climatology of tropical moisture exports to the Northern hemispheric extratropics. J Clim 23(4):987–1003. doi: 10.1175/2009JCLI3333.1 CrossRefGoogle Scholar
  28. Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw DJ, Wade AJ (2011) Winter floods in Britain are connected to atmospheric rivers. Geophys Res Lett 38. doi: 10.1029/2011GL049783
  29. Lavers DA, Villarini G, Allan RP, Wood EF, Wade AJ (2012) The detection of atmospheric rivers in atmospheric reanalyses and their links to British winter floods and the large-scale climatic circulation. J Geophys Res Atmos 117. doi: 10.1029/2012JD018027
  30. Lavers DA, Villarini G (2013) The nexus between atmospheric rivers and extreme precipitation across Europe. Geophys Res Lett 40(12):3259–3264. doi: 10.1002/grl.50636 CrossRefGoogle Scholar
  31. Lavers DA, Villarini G (2015) The contribution of atmospheric rivers to precipitation in Europe and the United States. J Hydrol 522:382–390. doi: 10.1016/j.jhydrol.2014.12.010 CrossRefGoogle Scholar
  32. Leung LR, Qian Y (2009) Atmospheric rivers induced heavy precipitation and flooding in the western US simulated by the WRF regional climate model. Geophys Res Lett 36. doi: 10.1029/2008GL036445
  33. Neiman P, Persson P, Ralph F, Jorgensen D, White A, Kingsmill D (2004) Modification of fronts and precipitation by coastal blocking during an intense landfalling winter storm in southern California: observations during CALJET. Mon Weather Rev 132(1):242–273. doi: 10.1175/1520-0493(2004)132<0242:MOFAPB>2.0.CO;2 CrossRefGoogle Scholar
  34. Neiman PJ, Ralph FM, Wick GA, Lundquist JD, Dettinger MD (2008) Meteorological characteristics and overland precipitation impacts of atmospheric rivers affecting the West Coast of North America based on eight years of SSM/I satellite observations. J Hydrometeorol 9(1):22–47. doi: 10.1175/2007JHM855.1 CrossRefGoogle Scholar
  35. Newell R, Newell N, Zhu Y, Scott C (1992) Tropospheric rivers—a pilot-study. Geophys Res Lett 19(24):2401–2404. doi: 10.1029/92GL02916 CrossRefGoogle Scholar
  36. Newman M, Kiladis GN, Weickmann KM, Ralph FM, Sardeshmukh PD (2012) Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J Clim 25:73417361. doi: 10.1175/JCLI-D-11-00665.1 CrossRefGoogle Scholar
  37. Payne AE, Magnusdottir G (2014) Dynamics of landfalling atmospheric rivers over the North Pacific in 30 years of MERRA reanalysis. J Clim 27(18):7133–7150. doi: 10.1175/JCLI-D-14-00034.1 CrossRefGoogle Scholar
  38. Poli P, Hersbach H, Tan D, Dee D, Thépaut JN, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Hólm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (era-20c). Technical report, ERA report series 14Google Scholar
  39. Qian B, Corte-Real J, Xu H (2000) Is the North Atlantic oscillation the most important atmospheric pattern for precipitation in Europe? J Geophys Res Atmos 105(D9):11,901–11,910. doi: 10.1029/2000JD900102 CrossRefGoogle Scholar
  40. Ralph F, Neiman P, Wick G (2004) Satellite and CALJET aircraft observations of atmospheric rivers over the eastern north pacific ocean during the winter of 1997/98. Mon Weather Rev 132(7):1721–1745. doi: 10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2 CrossRefGoogle Scholar
  41. Ralph FM, Coleman T, Neiman PJ, Zamora RJ, Dettinger MD (2013) Observed impacts of duration and seasonality of atmospheric-river landfalls on soil moisture and runoff in coastal Northern California. J Hydrometeorol 14(2):443–459. doi: 10.1175/JHM-D-12-076.1 CrossRefGoogle Scholar
  42. Ramos AM, Trigo RM, Liberato MLR, Tome R (2015) Daily precipitation extreme events in the Iberian Peninsula and its association with atmospheric rivers. J Hydrometeorol 16(2):579–597. doi: 10.1175/JHM-D-14-0103.1 CrossRefGoogle Scholar
  43. Sodemann H, Stohl A (2013) Moisture origin and meridional transport in atmospheric rivers and their association with multiple cyclones. Mon Weather Rev 141(8):2850–2868. doi: 10.1175/MWR-D-12-00256.1 CrossRefGoogle Scholar
  44. Sterl A (2004) On the (in)homogeneity of reanalysis products. J Clim 17(19):3866–3873. doi: 10.1175/1520-0442(2004)017<3866:OTIORP>2.0.CO;2 CrossRefGoogle Scholar
  45. Sturaro G (2003) A closer look at the climatological discontinuities present in the NCEP/NCAR reanalysis temperature due to the introduction of satellite data. Clim Dyn 21(3–4):309–316. doi: 10.1007/s00382-003-0334-4 CrossRefGoogle Scholar
  46. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  47. Trenberth K, Branstator G, Karoly D, Kumar A, Lau N, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geohphys Res Atmos 103(C7):14,291–14,324. doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  48. Trenberth K, Hurrell J (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9(6):303–319. doi: 10.1007/BF00204745 CrossRefGoogle Scholar
  49. Trigo RM, Pozo-Vázquez D, Osborn TJ, Castro-Díez Y, Gámiz-Fortis S, Esteban-Parra MJ (2004) North Atlantic oscillation influence on precipitation, river flow and water resources in the Iberian Peninsula. Int J Climatol 24(8):925–944. doi: 10.1002/joc.1048 CrossRefGoogle Scholar
  50. Warner MD, Mass CF, Salathé EP Jr (2015) Changes in winter atmospheric rivers along the North American west coast in CMIP5 climate models. J Hydrometeorol 16:118–128. doi: 10.1175/JHM-D-14-0080.1 CrossRefGoogle Scholar
  51. Zhang Y, Wallace J, Battisti D (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10(5):1004–1020. doi: 10.1175/1520-0442(1997)010<1004:ELIV>2.0.CO;2 CrossRefGoogle Scholar
  52. Zhu Y, Newell R (1994) Atmospheric rivers and bombs. Geophys Res Lett 21(18):1999–2002. doi: 10.1029/94GL01710 CrossRefGoogle Scholar
  53. Zhu Y, Newell R (1998) A proposed algorithm for moisture fluxes from atmospheric rivers. Mon Weather Rev 126(3):725–735. doi: 10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.MeteoGalicia - Consellería de Medio Ambiente e Ordenación do TerritorioXunta de GaliciaSantiago de CompostelaSpain
  2. 2.Instituto de Física de Cantabria (CSIC-UC)SantanderSpain
  3. 3.Predictia Intelligent Data SolutionsSantanderSpain

Personalised recommendations