Skip to main content

Advertisement

Log in

Investigating the zonal wind response to SST warming using transient ensemble AGCM experiments

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The response of the atmospheric circulation to greenhouse gas-induced SST warming is investigated using large ensemble experiments with two AGCMs, with a focus on the robust feature of the poleward shift of the eddy driven jet. In these experiments, large ensembles of simulations are conducted by abruptly switching the SST forcing on from January 1st to focus on the wintertime circulation adjustment. A hybrid, finite amplitude wave activity budget analysis is performed to elucidate the nonlinear and irreversible aspects of the eddy-mean flow interaction during the adjustment of the zonal wind towards a poleward shifted state. The results confirm the results from earlier more idealized studies, particularly the importance of reduced dissipation of wave activity, in which the midlatitude decrease of effective diffusivity appears to be dominant. This reduction in dissipation increases the survival of midlatitude waves. These surviving waves, when reaching the upper propagation level in the upper troposphere, are subject to the influence of the increase of reflection phase speed at the poleward side of the mean jet, and thus more waves are reflected equatorward across the jet, giving rise to a poleward transport of momentum and thus an eddy momentum flux convergence for the poleward shift. The relative importance of wave breaking-induced PV mixing versus diabatic PV source in the evolution of the Lagrangian PV gradient is also investigated. The former plays the dominant role in the PV gradient formation during the initial phase of the jet shift, while the latter actually opposes the evolution of the Lagrangian PV gradient at times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andrews DG, Holton JR, Leovy C (1987) Middle atmosphere dynamics. Academic Press, London

    Google Scholar 

  • Barnes EA, Polvani LM (2013) Response of the midlatitude jets and of their variability to increased greenhouse gases in the CMIP5 models. J Clim. doi:10.1175/JCLI-D-12-00536.1

    Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Butler AH, Thompson DWJ, Birner T (2011) Isentropic slopes, downgradient eddy fluxes, and the extratropical atmospheric circulation response to tropical tropospheric heating. J Atmos Sci 68:2292–2305

    Article  Google Scholar 

  • Chen G, Held IM, Robinson WA (2007) Sensitivity of the latitude of the surface westerlies to surface friction. J Atmos Sci 64:2899–2915. doi:10.1175/JAS3995.1

    Article  Google Scholar 

  • Chen G, Lu J, Frierson DMW (2008) Phase speed spectra and the latitude of surface westerlies: interannual variability and global warming trend. J Clim 21:5942–5959

    Article  Google Scholar 

  • Chen G, Lu J, Sun L (2013) Delineating the eddy–zonal flow interaction in the atmospheric circulation response to climate forcing: uniform SST warming. J Atmos Sci 70:2214–2233

    Article  Google Scholar 

  • Delworth T et al (2006) GFDL’s CM2 global coupled climate models: Part 1—formulation and simulation characteristics. J Clim 19:643–674

    Article  Google Scholar 

  • Gent P et al (2011) The Community Climate System Model, version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Grise KM, Polvani LM (2014) The response of midlatitude jets to increased CO2: distinguishing the roles of sea surface temperature and direct radiative forcing. Geophys Res Lett 41:6863–6871. doi:10.1002/2014GL061638

    Article  Google Scholar 

  • Haynes P, Shuckburgh E (2000) Effective diffusivity as a diagnostic of atmospheric transport 2. Troposphere and lower stratosphere. J Geophys Res 105:22795–22810

    Article  Google Scholar 

  • Held IM, Hou AY (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atmos Sci 37:515–533

    Article  Google Scholar 

  • Held IM, Suarez MJ (1994) A proposal for the intercomparison of the dynamical cores of atmospheric general circulation models. Bull Am Meteorol Soc 75:1825–1830

    Article  Google Scholar 

  • Holland MM, Bitz CM (2003) Polar amplification of climate change in coupled models. Clim Dyn 21:221–232

    Article  Google Scholar 

  • Kidston J, Vallis GK (2010) Relationship between eddy-driven jet latitude and width. Geophys Res Lett. doi:10.1029/2010GL044849

    Google Scholar 

  • Kidston J, Dean SM, Renwick JA, Vallis GK (2010) A robust increase in the eddy length scale in the simulation of future climates. Geophys Res Lett 37:L03806. doi:10.1029/2009GL041615

    Google Scholar 

  • Kidston J, Vallis GK, Dean SM, Renwick JA (2011) Can the increase in the eddy length scale under global warming cause the poleward shift of the jet streams? J Clim 24:3764–3780

    Article  Google Scholar 

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700

    Article  Google Scholar 

  • Lorenz DJ (2014a) Understanding mid-latitude jet variability and change using Rossby wave chromatography: poleward shifted jets in response to external forcing. J Atmos Sci 71:2370–2389

    Article  Google Scholar 

  • Lorenz DJ (2014b) Understanding mid-latitude jet variability and change using Rossby wave chromatography: wave-mean flow interaction. J Atmos Sci 71:3684–3705

    Article  Google Scholar 

  • Lorenz DJ (2015) Understanding mid-latitude jet variability and change using Rossby wave chromatography: methodology. J Atmos Sci 72:369–388

    Article  Google Scholar 

  • Lorenz DJ, DeWeaver ET (2007a) The response of the extratropical hydrological cycle to global warming. J Clim 20:3470–3484

    Article  Google Scholar 

  • Lorenz DJ, DeWeaver ET (2007b) Tropopause height and zonal wind response to global warming in the IPCC scenario integrations. J Geophys Res 112:D10119. doi:10.1029/2006JD008087

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006GL028443

    Google Scholar 

  • Lu J, Chen G, Frierson D (2008) Response of the zonal mean atmospheric circulation to El Nino versus global warming. J Clim 21:5835–5851

    Article  Google Scholar 

  • Lu J, Chen G, Frierson D (2010) The position of the midlatitude storm track and eddy-driven westerlies in aquaplanet AGCMs. J Atmos Sci 17(12):3984–4000

    Article  Google Scholar 

  • Lu J, Sun L, Wu Y, Chen G (2014) The role of irreversible PV mixing in the zonal mean circulation response to global warmings. J Clim 27:2297–2316

    Article  Google Scholar 

  • Manabe S, Bryan K, Spelman MJ (1990) Transient response of a global ocean–atmosphere model to a doubling of atmospheric carbon dioxide. J Phys Oceanogr 20:722–749

    Article  Google Scholar 

  • Marshall J, Shuckburgh E, Jones H, Hill C (2006) Estimates and implications of surface eddy diffusivity in the southern ocean derived from tracer transport. J Phys Oceanogr 36:1806–1821

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Moorthi S, Suarez MJ (1992) Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Mon Weather Rev 120:978–1002

    Article  Google Scholar 

  • Nakamura N (1995) Modified Lagrangian-mean diagnostics of the stratospheric polar vortices, I., Formulation and analysis of GFDL SKYHI GCM. J Atmos Sci 52:2096–2108

    Article  Google Scholar 

  • Nakamura N (1996) Two-dimensional mixing, edge formation, and permeability diagnosed in an area coordinate. J Atmos Sci 53:1524–1537

    Article  Google Scholar 

  • Nakamura N, Solomon A (2010) Finite-amplitude wave activity and mean flow adjustments in the atmospheric general circulation. Part I: quasigeostrophic theory and analysis. J Atmos Sci 53(11):1524–1537

    Article  Google Scholar 

  • Nakamura N, Zhu D (2010) Finite-amplitude wave activity and diffusive flux of potential vorticity in eddy–mean flow interaction. J Atmos Sci 67:2701–2716

    Article  Google Scholar 

  • Neale RB et al (2010) Description of the NCAR Community Atmosphere Model (CAM 4.0). NCAR Tech. Note NCAR/TN-4851STR, 212 pp. http://www.cesm.ucar.edu/models/ccsm4.0/cam/docs/description/cam4_desc.pdf

  • Pierrehumbert RT, Yang H (1993) Global chaotic mixing on isentropic surfaces. J Atmos Sci 50(15):2462–2480

    Article  Google Scholar 

  • Plumb RA, Ferrari R (2005) Transformed Eulerian-mean theory. Part I: nonquasigeostrophic theory for eddies on a zonal mean flow. J Phys Oceanogr 35:165–174

    Article  Google Scholar 

  • Rivière G (2011) A dynamical interpretation of the poleward shift of the jet streams in global warming scenarios. J Atmos Sci 68:1253–1272

    Article  Google Scholar 

  • Scheff J, Frierson D (2012) Twenty-first-century multimodel subtropical precipitation declines are mostly midlatitude shifts. J Clim 25:4330–4347

    Article  Google Scholar 

  • Schneider EK (1977) Axially symmetric steady state models of the basic state for instability and climate studies. Part II: nonlinear calculations. J Atmos Sci 34:280–292

    Article  Google Scholar 

  • Schneider EK (1984) Response of the annual and zonal mean winds and temperatures to variations in the heat and momentum sources. J Atmos Sci 41:1093–1115

    Article  Google Scholar 

  • Seager R et al (2007) Model projection of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  Google Scholar 

  • Staten PW, Reichler T (2013) On the ratio between shifts in the eddy-driven jet and the Hadley cell edge. Clim Dyn 42:1229–1242. doi:10.1007/s00382-013-1905-7

    Article  Google Scholar 

  • Staten PW, Rutz J, Reichler T, Lu J (2012) Breaking down the tropospheric circulation response by forcing. Clim Dyn 39:2361–2375. doi:10.1007/s00382-011-1267-y

    Article  Google Scholar 

  • Staten PW, Reichler T, Lu J (2014) The transient circulation response to radiative forcings and sea surface warming. J Clim 27:9323–9336

    Article  Google Scholar 

  • Sun L, Lu J, Chen G (2013) Sensitivities and mechanisms of the zonal mean atmospheric circulation response to tropical warming. J Atmos Sci 70:2487–2504

    Article  Google Scholar 

  • Tandon N, Gerber EP, Sobel AH, Polvani LM (2013) Understanding Hadley cell expansion vs. contraction: insights from simplified models and implications for recent observations. J Clim 26:4304–4321

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Williams GP (2006) Circulation sensitivity to tropopause height. J Atmos Sci 63:1954–1961

    Article  Google Scholar 

  • Wittman ML, Polvani LM, Charlton AJ (2007) The effect of lower stratospheric shear on baroclinic instability. J Atmos Sci 64:479–496

    Article  Google Scholar 

  • Wu Y, Seager R, Shaw TA, Ting M, Naik N (2012) Atmospheric circulation response to an instantaneous doubling of carbon dioxide. Part II: atmospheric transient adjustment and its dynamics. J Clim 26:918–935

    Article  Google Scholar 

  • Yin JH (2005) A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys Res Lett 32:L18701. doi:10.1029/2005GL023684

    Article  Google Scholar 

  • Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33:407–446

    Article  Google Scholar 

Download references

Acknowledgments

E.P. and E.K.S. are supported by NSF Grant AGS-1064045. J.L. is also partly supported by the Office of Science of the U.S. Department of Energy as part of the Regional and Global Climate Modeling Program. G.C. is supported by NSF Grant ATM- 1064079 and DOE Grant DE-FOA-0001036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palipane, E., Lu, J., Staten, P. et al. Investigating the zonal wind response to SST warming using transient ensemble AGCM experiments. Clim Dyn 48, 523–540 (2017). https://doi.org/10.1007/s00382-016-3092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3092-9

Keywords

Navigation