Climate Dynamics

, Volume 48, Issue 1–2, pp 405–427 | Cite as

The complex influence of ENSO on droughts in Ecuador

  • S. M. Vicente-Serrano
  • E. Aguilar
  • R. Martínez
  • N. Martín-Hernández
  • C. Azorin-Molina
  • A. Sanchez-Lorenzo
  • A. El Kenawy
  • M. Tomás-Burguera
  • E. Moran-Tejeda
  • J. I. López-Moreno
  • J. Revuelto
  • S. Beguería
  • J. J. Nieto
  • A. Drumond
  • L. Gimeno
  • R. Nieto


In this study, we analyzed the influence of El Niño–Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965–2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Niño 3.4 and El Niño 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical velocity) on different time-scales of drought severity were investigated. The results showed a very complex influence of ENSO on drought behavior across Ecuador, with two regional patterns in the evolution of droughts: (1) the Andean chain with no changes in drought severity, and (2) the Western plains with less severe and frequent droughts. We also detected that drought variability in the Andes mountains is explained by the El Niño 3.4 index [sea surface temperature (SST) anomalies in the central Pacific], whereas the Western plains are much more driven by El Niño 1 + 2 index (SST anomalies in the eastern Pacific). Moreover, it was also observed that El Niño and La Niña phases enhance droughts in the Andes and Western plains regions, respectively. The results of this work could be crucial for predicting and monitoring drought variability and intensity in Ecuador.


Standardized Precipitation Evapotranspiration Index (SPEI) Drought Ecuador El Niño 3.4 El Niño 1 + 2 



This work was supported by the EPhysLab (UVIGO-CSIC Associated Unit) and the research projects I-COOP H2O 2013CD0006: “Test multisectorial y actividades demostrativa sobre el potencial desarrollo de sistemas de monitorización de sequías en tiempo real en la región del oeste de Sudamérica” financed by the Spanish National Research Council, CGL2011-27574-CO2-02, CGL2014-52135-C03-01 and Red de variabilidad y cambio climático RECLIM (CGL2014-517221-REDT), financed by the Spanish Commission of Science and Technology and FEDER, and “LIFE12 ENV/ES/000536-Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area (LIFE MEDACC)” financed by the LIFE programme of the European Commission. Cesar Azorin-Molina was supported by the JCI-2011-10263 Grant. Arturo Sanchez-Lorenzo was supported by the JCI-2012-12508 Grant. Miquel Tomas-Burguera was supported by a doctoral grant by the Ministry of Economy and Competitiveness and Natalia Martin-Hernandez was supported by a doctoral grant by the Aragón Regional Government. E. Aguilar was funded by the Grant CCI-009-ATN/OC-12439-RG-2012 from the Banco Iberoamericano de Desarrollo.


  1. Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Atmos 112:C11007. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  2. Barry RG, Carleton AM (2001) Synoptic and dynamic climatology. Routledge, LondonCrossRefGoogle Scholar
  3. Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized Precipitation Evapotranspiration Index (SPEI) revisited: parameter fitting, evapotranspiration models, kernel weighting, tools, datasets and drought monitoring. Int J Climatol 34:3001–3023CrossRefGoogle Scholar
  4. Bendix J (2000) Precipitation dynamics in Ecuador and northern Peru during the 1991/92 El Nino: a remote sensing perspective. Int J Remote Sens 21:533–548CrossRefGoogle Scholar
  5. Bendix J, Lauer W (1992) Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische interpretation. Erdkunde 46:118–134CrossRefGoogle Scholar
  6. Bendix J, Trachte K, Palacios E, Rollenbeck R, Göttlicher D, Nauss T, Bendix A (2011) El Niño meets La Niña-anomalous rainfall patterns in the “traditional” El Niño region of Southern Ecuador. Erkunde 65:151–167CrossRefGoogle Scholar
  7. Borlace S, Cai W, Santoso A (2013) Multidecadal ENSO amplitude variability in a 1000-yr simulation of a coupled global climate model: Implications for observed ENSO variability. J Clim 26:9399–9407CrossRefGoogle Scholar
  8. Bourma MJ, Dye C (1997) Cycles of malaria associated with El Nino in Venezuela. J Am Med Assoc 3:1772–1774Google Scholar
  9. Buytaert W, Celleri R, Willems P, Bièvre BD, Wyseure G (2006) Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol 329:413–421CrossRefGoogle Scholar
  10. Cai W, Cowan T (2009) La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:L12805. doi: 10.1029/2009-GL037885 CrossRefGoogle Scholar
  11. Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116CrossRefGoogle Scholar
  12. Cai W et al (2015) Increased frequency of extreme La Niña events under greenhouse warming. Nat Clim Change 5:132–137CrossRefGoogle Scholar
  13. Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc Ser C 53(3):405–425. doi: 10.1111/j.1467-9876.2004.05155.x CrossRefGoogle Scholar
  14. Celleri R, Willems P, Buytaert W, Feyen J (2007) Space-time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol Process 21:3316–3327CrossRefGoogle Scholar
  15. Changnon SA, Easterling WE (1989) Measuring drought impacts: the Illinois case. Water Resour Bull 25:27–42CrossRefGoogle Scholar
  16. Chen D et al (2015) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci 8:339–345CrossRefGoogle Scholar
  17. Córdoba-Machado S, Palomino-Lemus R, Gámiz-Fortis S, Castro-Díez Y, Esteban-Parra MJ (2015) Assessing the impact of El Niño Modoki on seasonal precipitation in Colombia. Glob Planet Change 124:241–261CrossRefGoogle Scholar
  18. Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2:45–65CrossRefGoogle Scholar
  19. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58CrossRefGoogle Scholar
  20. Dewitte B, Vazquez-Cuervo J, Goubanova K, Illig S, Takahashi K, Cambon G, Purca S, Correa D, Gutierrez D, Sifeddine A, Ortlieb L (2012) Change in El Niño flavours over 1958–2008: implications for the long-term trend of the upwelling off Peru. Deep Sea Res Part II 77–80:143–156CrossRefGoogle Scholar
  21. Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40:2825–2847CrossRefGoogle Scholar
  22. Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrigat Drain Syst 16:33–45CrossRefGoogle Scholar
  23. Drumond A, Ambrizzi T (2006) Inter ENSO variability and its influences over the South American Monsoon System. Adv Geosci 6:167–171CrossRefGoogle Scholar
  24. Francou B, Vuille M, Favier V, Cáceres B (2004) New evidence for an ENSO impact on low-latitude glaciers: Antizana, Andes of Ecuador. J Geophys Res 109:D18106. doi: 10.1029/2003JD004484 CrossRefGoogle Scholar
  25. Frauen C, Dommenget D, Tyrrell N, Rezny M, Wales S (2014) Analysis of the nonlinearity of El Niño-Southern Oscillation Teleconnections. J Clim 27:6225–6244CrossRefGoogle Scholar
  26. Gagnon AS, Smoyer-Tomic KE, Bush ABG (2002) The El Niño southern oscillation and malaria epidemics in South America. J Biometeorol 46:81–89CrossRefGoogle Scholar
  27. Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major South American floodplains. J Geophys Res. doi: 10.1029/2000JD000306 Google Scholar
  28. Hamilton SK, Sippel SJ, Melack JM (2004) Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de Moxos (Bolivia) and the Llanos del Orinoco (Venezuela and Colombia). Hydrol Process 18:2103–2116CrossRefGoogle Scholar
  29. Hargreaves GL, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng ASCE 129:53–63CrossRefGoogle Scholar
  30. Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99CrossRefGoogle Scholar
  31. Haylock MR, Peterson TC, Alves LM et al (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512CrossRefGoogle Scholar
  32. Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of Their teleconnections. J Clim 10:1786–1789Google Scholar
  33. Huth R (2006) The effect of various methodological options on the detection of leading modes of sea level pressure variability. Tellus Ser A 58:121–130CrossRefGoogle Scholar
  34. Jiménez-Muñoz JC, Sobrino JA, Mattar C, Malhi Y (2013) Spatial and temporal patterns of the recent warming of the Amazon forest. J Geophys Res Atmos 118:5204–5215CrossRefGoogle Scholar
  35. Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26:4816–4827CrossRefGoogle Scholar
  36. Jollife IT (1986) Principal component analysis. Springer, New YorkCrossRefGoogle Scholar
  37. Jollife IT (1990) Principal component analysis: a beginner’s guide. Part I: Introduction and application. Weather 45:375–382CrossRefGoogle Scholar
  38. Kalnay E (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  39. Kousky VE, Kayano MT (1994) Principal modes of outgoing longwave radiation and 250-mb circulation for the South American sector. J Clim 7:1131–1143CrossRefGoogle Scholar
  40. Kousky VE, Kayano MT, Cavalcanti IFA (1984) A review of the Southern Oscillation: oceanic–atmospheric circulation changes and related rainfall anomalies. Tellus Ser A 36 A:490–504CrossRefGoogle Scholar
  41. Künzler M, Huggel C, Ramírez JM (2012) A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Nat Hazards 64:767–796CrossRefGoogle Scholar
  42. Lee T, McPhaden M (2010) Increasing intensity of El Nino in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi: 10.1029/2010GL044007 Google Scholar
  43. Lewis SL, Brando PM, Phillips OL, Van Der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554CrossRefGoogle Scholar
  44. Li G, Li Ch, Tan Y, Pan J (2013) Impacts of the central and eastern Pacific types of ENSO on sea surface temperature in the South Pacific. Theor Appl Climatol 114:315–327CrossRefGoogle Scholar
  45. Lyon B (2003) Enhanced seasonal rainfall in Northern Venezuela and the extreme events of December 1999. Hydrol Process 18:2103–2116Google Scholar
  46. Marengo JA, Nobre CA, Tomasella J et al (2008) The drought of Amazonia in 2005. J Clim 21:495–516CrossRefGoogle Scholar
  47. McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Paper presented at 8th conference on applied climatology (Anaheim, CA: Am. Meteorol. Soc.)Google Scholar
  48. McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett. doi: 10.1029/2009GL038774 Google Scholar
  49. McVicar TR et al (2012) Global review and synthesis of trends in observed terrestrial near surface wind speeds: implications for evaporation. J Hydrol 416(417):182–205CrossRefGoogle Scholar
  50. Meinen Ch, McPhaden J (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559CrossRefGoogle Scholar
  51. Mestas-Núñez A (2000) Orthogonally properties of rotated empirical modes. Int J Climatol 20:1509–1516CrossRefGoogle Scholar
  52. Mestre O, Domonkos P, Picard F, Auer I, Robin S, Lebarbier E, Böhm R, Aguilar E, Guijarro J, Vertacnik G, Klancar M, Dubuisson B, Stepanek P (2013) HOMER: HOMogenisation softwarE in R- methods and applications. Idöjárás 117:47–67Google Scholar
  53. Mo KC, Berbery EH (2011) Drought and persistent wet spells over South America based on observations and the U.S. CLIVAR drought experiments. J Clim 16:2302–2306Google Scholar
  54. Moran-Tejeda E et al (2015) Climate trends and variability in Ecuador (1966–2011). Int J Climatol. doi: 10.1002/joc.4597/abstract
  55. Mosquera-Machado S, Ahmad S (2007) Flood hazard assessment of Atrato River in Colombia. Water Resour Manag 21:591–609CrossRefGoogle Scholar
  56. Olivares I, Svenning J-C, van Bodegom PM, Balslev H (2015) Effects of warming and drought on the vegetation and plant diversity in the Amazon Basin. Bot Rev 81:42–69CrossRefGoogle Scholar
  57. Paredes FJ, Guevara E (2013) A probabilistic model for the prediction of meteorological droughts in Venezuela. Atmosfera 26:311–323CrossRefGoogle Scholar
  58. Penman HL (1948) Natural evaporation from open water, bare soil, and grass. Proc R Soc Lond A193:120–146CrossRefGoogle Scholar
  59. Phillips OL et al (2009) Drought sensitivity of the amazon rainforest. Science 323:1344–1347CrossRefGoogle Scholar
  60. Picard F, Lebarbier E, Hoebeke M, Rigail G, Thiam B, Robin S (2011) Joint segmentation calling and normalization of multiple CGH profiles. Biostatistics 12:413–428CrossRefGoogle Scholar
  61. Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. J Clim 10:2690–2702CrossRefGoogle Scholar
  62. Poveda G et al (2002) Influencia de fenómenos macro climáticos sobre el ciclo anual de la hidrología colombiana: cuantificación lineal, no lineal y percentiles probabilísticos. Meteorol Colomb 6:121–130Google Scholar
  63. Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234:3–27CrossRefGoogle Scholar
  64. Poveda G, Álvarez D, Rueda Ó (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249CrossRefGoogle Scholar
  65. Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res D Atmos 108:ACL 2-1–ACL 2-29CrossRefGoogle Scholar
  66. Richman MB (1986) Rotation of principal components. J Climatol 6:293–335CrossRefGoogle Scholar
  67. Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99:277–289CrossRefGoogle Scholar
  68. Rollenbeck R, Bendix J, Fabian P (2011) Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador. Hydrol Process 25:344–352CrossRefGoogle Scholar
  69. Román-Cuesta RM et al (2014) Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing. Glob Change Biol 20:1929–1942CrossRefGoogle Scholar
  70. Rossel F, Cadier E (2009) El Niño and prediction of anomalous monthly rainfalls in Ecuador. Hydrol Process 23:3253–3260CrossRefGoogle Scholar
  71. Rossel F, Le Goulven P, Cadier E (1999) Repartition spatiale de l’influence de l’ENSO sur les precipitations annuelles en Equateur. Revue des Sciences de l’Eau 12:183–200CrossRefGoogle Scholar
  72. Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) Causes of long-term drought in the U.S. Great Plains. J Clim 17:485–503CrossRefGoogle Scholar
  73. Seager R, Kushnir Y, Herweijer C, Naik N, Velez J (2005) Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim 18:4065–4088CrossRefGoogle Scholar
  74. Siegel S, Castelan NJ (1988) Nonparametric statistics for the behavioral sciences. Mc-Graw-Hill, Inc., New YorkGoogle Scholar
  75. Stillwell HD (1992) Natural hazards and disasters in Latin America. Nat Hazards 6:131–159CrossRefGoogle Scholar
  76. Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi: 10.1029/2011GL047364 CrossRefGoogle Scholar
  77. Taschetto AS, Gupta AS, Jourdain NC et al (2014) Cold tongue and warm pool ENSO Events in CMIP5: mean state and future projections. J Clim 27:2861–2885CrossRefGoogle Scholar
  78. Tedeschi RG, Cavalcanti IFA, Grimm AM (2013) Influences of two types of ENSO on South American precipitation. Int J Climatol 33:1382–1400CrossRefGoogle Scholar
  79. Trenberth KE, Smith L (2006) The vertical structure of temperature in the tropics: different flavors of El Niño. J Clim 19:4956–4973CrossRefGoogle Scholar
  80. Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701CrossRefGoogle Scholar
  81. Venema V, Mestre O, Aguilar E et al (2012) Benchmarking monthly homogenization algorithms. Clim Past 8:89–115CrossRefGoogle Scholar
  82. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010a) A Multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index–SPEI. J Clim 23:1696–1718CrossRefGoogle Scholar
  83. Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, El Kenawy A (2010b) A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J Hydrometeorol 11:1033–1043CrossRefGoogle Scholar
  84. Vicente-Serrano SM, López-Moreno JI, Gimeno L, Nieto R, Morán-Tejeda E, Lorenzo-Lacruz J, Beguería S, Azorin-Molina C (2011a) A multi-scalar global evaluation of the impact of ENSO on droughts. J Geophys Res Atmos 116:D20109. doi: 10.1029/2011JD016039 CrossRefGoogle Scholar
  85. Vicente-Serrano SM, Beguería S, López-Moreno JI (2011b) Comment on “Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900–2008” by A. Dai. J Geophys Res Atmos 116:D19112. doi: 10.1029/2011JD016410 CrossRefGoogle Scholar
  86. Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J et al (2012) Performance of drought índices for ecological, agricultural and hydrological applications. Earth Interact 16:1–27CrossRefGoogle Scholar
  87. Vicente-Serrano SM, Gouveia C, Camarero JJ et al (2013) The response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110:52–57CrossRefGoogle Scholar
  88. Vicente-Serrano SM, Van der Schrier G, Beguería S, Azorin-Molina C, Lopez-Moreno JI (2015) Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J Hydrol 426:42–54CrossRefGoogle Scholar
  89. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  90. Vourlitis GL, de Souza Nogueira J, de Almeida Lobo F, Pinto OB Jr (2014) Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles. Int J Biometeorol 59:217–230CrossRefGoogle Scholar
  91. Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the southern oscillation. Int J Climatol 19:1579–1600CrossRefGoogle Scholar
  92. Vuille M, Bradley RS, Keimig F (2000a) Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic Sea Surface temperature anomalies. J Clim 13:2520–2535CrossRefGoogle Scholar
  93. Vuille M, Bradley RS, Keimig F (2000b) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res Atmos 105(D10):12447–12460CrossRefGoogle Scholar
  94. Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99CrossRefGoogle Scholar
  95. Vuille M, Francou B, Wagnon P et al (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96CrossRefGoogle Scholar
  96. Wang Ch (2002) Atmospheric circulation cells associated with the El Niño-Southern Oscillation. J Clim 15:399–419CrossRefGoogle Scholar
  97. Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674CrossRefGoogle Scholar
  98. Wilhite DA (1993) Drought assessment, management and planning: theory and case studies. Kluwer, BostonCrossRefGoogle Scholar
  99. Xu H, Wang Y, Xie S-P (2004) Effects of the andes on eastern pacific climate: a regional atmospheric model study. J Clim 17:589–602CrossRefGoogle Scholar
  100. Yeh S-W, Kug J-S, An S-I (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia-Pac J Atmos Sci 50:69–81CrossRefGoogle Scholar
  101. Yoon J-H, Yeh S-W, Kim Y-H, Kug J-S, Min H-S (2012) Understanding the responses of sea surface temperature to the two different types of El Niño in the western North Pacific. Prog Oceanogr 105:81–89CrossRefGoogle Scholar
  102. Zhang T, Perlwitz J, Hoerling MP (2014) What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys Res Lett 41:1019–1025CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. M. Vicente-Serrano
    • 1
  • E. Aguilar
    • 2
  • R. Martínez
    • 3
  • N. Martín-Hernández
    • 1
  • C. Azorin-Molina
    • 1
  • A. Sanchez-Lorenzo
    • 1
  • A. El Kenawy
    • 4
    • 5
  • M. Tomás-Burguera
    • 6
  • E. Moran-Tejeda
    • 1
  • J. I. López-Moreno
    • 1
  • J. Revuelto
    • 1
  • S. Beguería
    • 6
  • J. J. Nieto
    • 3
  • A. Drumond
    • 7
  • L. Gimeno
    • 7
  • R. Nieto
    • 7
  1. 1.Instituto Pirenaico de Ecología, Consejo Superior de Investigaciones Científicas (IPE–CSIC)SaragossaSpain
  2. 2.Center for Climate Change, C3Universitat Rovira i Virgili (URV)TarragonaSpain
  3. 3.Centro Internacional para la Investigación del Fenómeno de El Niño (CIIFEN)GuayaquilEcuador
  4. 4.Water Desalination and Reuse Centre (WDRC)King Abdullah University of Science and TechnologyThuwalSaudi Arabia
  5. 5.Department of GeographyMansoura UniversityMansouraEgypt
  6. 6.Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC)SaragossaSpain
  7. 7.Environmental Physics LaboratoryUniversidade de VigoOurenseSpain

Personalised recommendations