Climate Dynamics

, Volume 48, Issue 1–2, pp 353–366 | Cite as

On the robustness of near term climate predictability regarding initial state uncertainties

  • Agathe Germe
  • Florian Sévellec
  • Juliette Mignot
  • Didier Swingedouw
  • Sebastien Nguyen


A set of four ensemble simulations has been designed to assess the relative importance of atmospheric, oceanic, and deep ocean initial state uncertainties, as represented by spatial white noise perturbations, on seasonal to decadal prediction skills in a perfect model framework. It is found that a perturbation mimicking random oceanic uncertainties have the same impact as an atmospheric-only perturbation on the future evolution of the ensemble after the first 3 months, even if they are initially only located in the deep ocean. This is due to the fast (1 month) perturbation of the atmospheric component regardless of the initial ensemble generation strategy. The divergence of the ensemble upper-ocean characteristics is then mainly induced by ocean–atmosphere interactions. While the seasonally varying mixed layer depth allows the penetration of the different signals in the thermocline in the mid-high latitudes, the rapid adjustment of the thermocline to wind anomalies followed by Kelvin and Rossby waves adjustment dominates the growth of the ensemble spread in the tropics. These mechanisms result in similar ensemble distribution characteristics for the four ensembles design strategy at the interannual timescale.


Climate predictability Uncertainties Ensemble spread Initial condition perturbation Prediction reliability Ensemble generation 



The data used in this study are freely available: the authors can send them upon request. This work has been funded by the European community 7th framework programme (FP7) through the SPECS (Seasonal-to-decadal climate Prediction for the improvement of Climate Service) project under Grant agreement 308378 and by the Natural and Environmental Research Council UK (MESO-CLIP, NE/K005154/1 and SMURPHS, NE/N005767/1). We also thank the TGCC for computing resources and the IPSL model pole. The authors would like to thank Pablo Ortega and Javier Garcia-Serrano for helpful discussions and two reviewers for there helpful comment on the manuscript. They also thank J. Annan and W. Connolley for interesting exchanges about their experiment with HadCAM3. A.G. also wishes to thank the University of Southampton and the National Oceanography Centre Southampton and especially the PO and MSM teams for their welcome and the facilities they provided in order to help collaboration.


  1. Abraham JP, Baringer M, Bindoff NL, Boyer T, Cheng LJ, Church JA, Conroy JL, Domingues CM, Fasullo JT, Gilson J, Goni G, Good SA, Gorman JM, Gouretski V, Ishii M, Johnson GC, Kizu S, Lyman JM, Macdonald AM, Minkowycz WJ, Moffitt SE, Palmer MD, Piola AR, Reseghetti F, Schuckmann K, Trenberth KE, Velicogna I, Willis JK (2013) A review of global ocean temperature observations: implications for ocean heat content estimates and climate change. Rev Geophys 51(3):450–483. doi: 10.1002/rog.20022 CrossRefGoogle Scholar
  2. Aumont O, Bopp L (2006) Globalizing results from ocean in situ iron fertilization studies. Glob Biogeochem Cycles 20, GB2017. doi: 10.1029/2005GB002591
  3. Baehr J, Piontek R (2014) Ensemble initialization of the oceanic component of a coupled model through bred vectors at seasonal-to-interannual timescales. Geosci Model Dev 7(1):453–461. doi: 10.5194/gmd-7-453-2014 CrossRefGoogle Scholar
  4. Bellucci A, Gualdi S, Masina S, Storto A, Scoccimarro E, Cagnazzo C, Fogli P, Manzini E, Navarra A (2013) Decadal climate predictions with a coupled OAGCM initialized with oceanic reanalyses. Clim Dyn 40(5–6):1483–1497. doi: 10.1007/s00382-012-1468-z CrossRefGoogle Scholar
  5. Born A, Mignot J, Stocker T (2015) Multiple equilibria as a possible mechanism for decadal variability in the North Atlantic Ocean. J Clim 28:8907–8922CrossRefGoogle Scholar
  6. Branstator G, and Teng H (2010) Two limits of initial-value decadal predictability in a CGCM. Journal of climate 23(23):6292–6311.doi: 10.1175/2010JCLI3678.1 CrossRefGoogle Scholar
  7. Bretherton CS, Widmann M, Dymniko VP, Wallace JM, Bladé I (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009CrossRefGoogle Scholar
  8. Buchan J, Hirschi JJM, Blaker AT, Sinha B (2014) North Atlantic SST anomalies and the cold North European weather events of winter 2009/10 and December 2010. Mon Weather Rev 142(2):922–932. doi: 10.1175/MWR-D-13-00104.1 CrossRefGoogle Scholar
  9. Buizza R (2010) Horizontal resolution impact on short-and long-range forecast error. Q J R Meteorol Soc 136(649):1020–1035. doi: 10.1002/qj.613 CrossRefGoogle Scholar
  10. Collins M, Botzet M, Carril AF, Drange H, Jouzeau A, Latif M, Masina S, Otteraa AH, Pohlmann H, Sorteberg A, Sutton R, Terray L (2006) Interannual to decadal climate predictability in the North Atlantic: a multimodel-ensemble study. J Clim 19(7):1195–1203. doi: 10.1175/JCLI3654.1 CrossRefGoogle Scholar
  11. Du H, Doblas-Reyes FJ, García-Serrano J, Guemas V, Soufflet Y, Wouters B (2012) Sensitivity of decadal predictions to the initial atmospheric and oceanic perturbations. Clim Dyn 39(7–8):2013–2023. doi: 10.1007/s00382-011-1285-9 CrossRefGoogle Scholar
  12. Dufresne JL, Foujols M-A, Denvil M-AS, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, de Noblet N, Duvel J-P, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix J-Y, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre M-P, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165. doi: 10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  13. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:2609–2612CrossRefGoogle Scholar
  14. Goldenberg SB, Landsea CW, Mestas-Nuñez AM, Gray WM (2001) The recent increase in Atlantic hurricane activity: causes and implications. Science 293(5529):474–479. doi: 10.1126/science.1060040 CrossRefGoogle Scholar
  15. Griffies SM, Bryan K (1997) A predictability study of simulated North Atlantic multidecadal variability. Clim Dyn 13(7–8):459–487. doi: 10.1007/s003820050177 CrossRefGoogle Scholar
  16. Ham YG, Rienecker MM, Suarez MJ, Vikhliaev Y, Zhao B, Marshak J, Verniere G, Schubert SD (2014) Decadal prediction skill in the GEOS-5 forecast system. Clim Dyn. doi: 10.1007/s00382-013-1858-x Google Scholar
  17. Hanawa K, Talley LD (2001) Mode waters. Int Geophys Ser 77:373–386CrossRefGoogle Scholar
  18. Hazeleger W, Wouters B, Oldenborgh GJ, Corti S, Palmer T, Smith D, Storch JS (2013) Predicting multiyear north atlantic ocean variability. J Geophys Res 118(3):1087–1098. doi: 10.1002/jgrc.20117 CrossRefGoogle Scholar
  19. Hourdin F, Foujols M-A, Codron F (2013) Impact of the LMDZ atmospheric grid configuration on the climate and sensitivity of the IPSL-CM5A coupled model. Clim Dyn. doi: 10.1007/s00382-012-1411-3 Google Scholar
  20. Johnson E, McPhaden MJ (1993) Structure of intraseasonal Kelvin waves in the equatorial Pacific Ocean. J Phys Oceanogr 23:608–625. doi: 10.1175/1520-0485(1993)023<0608:SOIKWI>2.0.CO;2 CrossRefGoogle Scholar
  21. Karspeck AR, Stammer D, Köhl A, Danabasoglu G, Balmaseda M, Smith DM, Fujii Y, Zhang S, Giese B, Tsujino H, Rosati A (2015) Comparison of the Atlantic meridional overturning circulation between 1960 and 2007 in six ocean reanalysis products. Clim Dyn. doi: 10.1007/s00382-015-2787-7 Google Scholar
  22. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453(7191):84–88CrossRefGoogle Scholar
  23. Kennedy JJ (2014) A review of uncertainty in in situ measurements and data sets of sea surface temperature. Rev Geophys 52(1):1–32. doi: 10.1002/2013RG000434 CrossRefGoogle Scholar
  24. Kessler WS, McPhaden JM, Weickmann KM (1995) Forcing of intraseasonal Kelvin waves in the equatorial Pacific. J Geophys Res 100(C6):10–613CrossRefGoogle Scholar
  25. Kirtman B, Power SB, Adedoyin JA, Boer GJ, Bojariu R, Camilloni I, Doblas-Reyes FJ, Fiore AM, Kimoto M, Meehl GA, Prather M, Sarr A, Schär C, Sutton R, van Oldenborgh GJ, Vecchi G, Wang HJ (2013) Near-term climate change: projections and predictability. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  26. Kolodziejczyk N, Reverdin G, Lazar A (2015) Interannual variability of the mixed layer winter convection and spice injection in the eastern subtropical North Atlantic. J Phys Oceanogr 45(2):504–525CrossRefGoogle Scholar
  27. Kröger J, Müller WA, Von Storch JS (2012) Impact of different ocean reanalyses on decadal climate prediction. Clim Dyn 39:795–810. doi: 10.1007/s00382-012-1310-7 CrossRefGoogle Scholar
  28. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20(2):130–141CrossRefGoogle Scholar
  29. Lorenz EN (1969) Atmospheric predictability as revealed by naturally occurring analogues. J Atmos Sci 26(4):636–646CrossRefGoogle Scholar
  30. Madec G (2008) NEMO ocean engine, Technical note, IPSL. Available at
  31. McCarthy GD, Haigh ID, Hirschi JJM, Grist JP, Smeed DA (2015) Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521(7553):508–510. doi: 10.1038/nature14491 CrossRefGoogle Scholar
  32. Mignot J, Swingedouw D, Deshayes J, Marti O, Talandier C, Séférian R, Lengaigne M, Madec G (2013) On the evolution of the oceanic component of the IPSL climate models from CMIP3 to CMIP5: a mean state comparison. Ocean Model 72:167–184. doi: 10.1016/j.ocemod.2013.09.001 CrossRefGoogle Scholar
  33. Mignot J, Garcia-Serrano J, Swingedouw D, Germe A, Nguyen S, Ortega P, Guilyardi E, Ray S (2015) Decadal prediction skill in the ocean with surface nudging in the IPSL-CM5A-LR climate model. Clim Dyn. doi: 10.1007/s00382-015-2898-1
  34. Msadek R, Dixon KW, Delworth TL, Hurlin W (2010) Assessing the predictability of the Atlantic meridional overturning circulation and associated fingerprints. Geophys Res Lett. doi: 10.1029/2010GL044517 Google Scholar
  35. Müller WA, Pohlmann H, Sienz F, Smith D (2014) Decadal climate predictions for the period 1901–2010 with a coupled climate model. Geophys Res Lett 41(6):2100–2107. doi: 10.1002/2014GL059259   CrossRefGoogle Scholar
  36. Ortega P, Mignot J, Swingedouw D, Sévellec F, Guilyardi E (2015) Reconciling two alternative mechanisms behind bi-decadal variability in the North Atlantic. Prog Oceanogr 137:237–249. doi: 10.1016/j.pocean.2015.06.009 CrossRefGoogle Scholar
  37. Peings Y, Magnusdottir G (2014) Forcing of the wintertime atmospheric circulation by the multidecadal fluctuations of the North Atlantic ocean. Environ Res Lett 9(3):034018. doi: 10.1088/1748-9326/9/3/034018 CrossRefGoogle Scholar
  38. Persechino A, Mignot J, Swingedouw D, Labetoulle S, Guilyardi E (2013) Decadal predictability of the Atlantic meridional overturning circulation and climate in the IPSL-CM5A-LR model. Clim Dyn 40(9–10):2359–2380. doi: 10.1007/s00382-012-1466-1 CrossRefGoogle Scholar
  39. Philander SGH, Yamagata T, Pacanowski RC (1984) Unstable air–sea interactions in the tropics. J Atmos Sci 41:604–613. doi: 10.1175/1520-0469(1984)041<0604:UASIIT>2.0.CO;2 CrossRefGoogle Scholar
  40. Pohlmann H, Botzet M, Latif M, Roesch A, Wild M, Tschuck P (2004) Estimating the decadal predictability of a coupled AOGCM. J Clim 17(22):4463–4472. doi: 10.1175/3209.1 CrossRefGoogle Scholar
  41. Pohlmann H, Smith DM, Balmaseda MA, Keenlyside NS, Masina S, Matei D, Müller WA, Rogel P (2013) Predictability of the mid-latitude Atlantic meridional overturning circulation in a multi-model system. Clim Dyn 41(3–4):775–785. doi: 10.1007/s00382-013-1663-6 CrossRefGoogle Scholar
  42. Ray S, Swingedouw D, Mignot J, Guilyardi E (2014) Effect of surface restoring on subsurface variability in a climate model during 1949–2005. Clim Dyn. doi: 10.1007/s00382-014-2358-3 Google Scholar
  43. Romanova V, Hense A (2015) Anomaly transform methods based on total energy and ocean heat content norms for generating ocean dynamic disturbances for ensemble climate forecasts. Clim Dyn. doi: 10.1007/s00382-015-2567-4 Google Scholar
  44. Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L (2015) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn. doi: 10.1007/s00382-015-2678-y Google Scholar
  45. Séférian R, Bopp L, Gehlen M, Orr JC, Ethé C, Cadule P, Aumont O, Salas y Mélia D, Voldoire A, Madec G (2013) Skill assessment of three earth system models with common marine biogeochemistry. Clim Dyn 40(9–10):2549–2573. doi: 10.1007/s00382-012-1362-8 CrossRefGoogle Scholar
  46. Servonnat J, Mignot J, Guilyardi E, Swingedouw D, Séférian R, Labetoulle S (2014) Reconstructing the subsurface ocean decadal variability, using surface nudging in a perfect model framework. Clim Dyn. doi: 10.1007/s00382-014-2184-7 Google Scholar
  47. Sévellec F, Fedorov AV (2013) Model bias reduction and the limits of oceanic decadal predictability: importance of the deep ocean. J Clim 26(11):3688–3707. doi: 10.1175/JCLI-D-12-00199.1 CrossRefGoogle Scholar
  48. Smith DM, Cusack S, Colman AW, Folland CK, Harris GR, Murphy JM (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317(5839):796–799. doi: 10.1126/science.1139540 CrossRefGoogle Scholar
  49. Stan C, Kirtman BP (2008) The influence of atmospheric noise and uncertainty in ocean initial conditions on the limit of predictability in a coupled GCM. J Clim 21(14):3487–3503. doi: 10.1175/2007JCLI2071.1 CrossRefGoogle Scholar
  50. Stockdale TN, Anderson DLT, Alves JOS, Balmaseda MA (1998) Global seasonal rainfall forecasts using a coupled ocean–atmosphere model. Nature 392(6674):370–373. doi: 10.1038/32861 CrossRefGoogle Scholar
  51. Sutton RW, Dong B (2012) Atlantic Ocean influence on a shift in European climate in the 1990s. Nat Geosci. doi: 10.1038/ngeo1595 Google Scholar
  52. Sutton RT, Hodson DL (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309(5731):115–118. doi: 10.1126/science.1109496 CrossRefGoogle Scholar
  53. Swingedouw D, Mignot J, Labetoulle S, Guilyardi E, Madec G (2013) Initialisation and predictability of the AMOC over the last 50 years in a climate model. Clim Dyn 40(9–10):2381–2399. doi: 10.1007/s00382-012-1516-8 CrossRefGoogle Scholar
  54. Valcke S (2006) OASIS3 user guide (prism_2-5), technical report TR/CMGC/06/73, PRISM report no 2. CERFACS, Toulouse, p 60Google Scholar
  55. Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett. doi: 10.1029/2006GL026267 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Agathe Germe
    • 1
  • Florian Sévellec
    • 2
  • Juliette Mignot
    • 1
    • 3
  • Didier Swingedouw
    • 4
  • Sebastien Nguyen
    • 1
  1. 1.LOCEAN Laboratory-IPSLSorbonne Universités (UPMC, Univ Paris 06)-CNRS-IRD-MNHNParisFrance
  2. 2.Ocean and Earth ScienceUniversity of SouthamptonSouthamptonUK
  3. 3.Climate and Environmental Physics and Oeschger Centre for Climate Change ResearchUniversity of BernBernSwitzerland
  4. 4.Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC)UMR CNRS 5805 EPOC - OASU - Université de BordeauxPessacFrance

Personalised recommendations