Advertisement

Climate Dynamics

, Volume 51, Issue 3, pp 951–967 | Cite as

Atmospheric conditions associated with heavy precipitation events in comparison to seasonal means in the western mediterranean region

  • Samiro Khodayar
  • Norbert Kalthoff
  • Christoph Kottmeier
Article

Abstract

The autumn atmospheric conditions associated with Heavy Precipitation Events (HPEs) in the western mediterranean region and differences with respect to the seasonal-mean conditions are investigated. Seasonal high-resolution simulations from the regional climate model COSMO-CLM covering the autumn periods of 2011 and 2012 are used. Atmospheric conditions at five different subdomains surrounding the western Mediterranean are considered, namely France, Italy (North and South), Spain, and North Africa. During HPEs, moisture and instability sources are located generally upstream of the target area over the sea, being transported by fast low-level winds towards the HPE areas. Concentration of high humidity over land and initiation of convection are highly related to the orography in the area. Stronger convective precipitation events occur at mid-level elevations rather than at higher altitudes. The significant increase in atmospheric moisture and instability, identified prior to HPEs, builds up in two different time lengths: atmospheric moisture increase could be traced back to at least 6–24 h before the initiation stage of the event, whereas an increase of Convective Available Potential Energy (CAPE) is detected in the hours prior to the event during the mature stage. The most intense HPEs are in general associated with higher values of integrated water vapour, CAPE, and low-level and mid-tropospheric wind speed. During HPEs in all subdomains, the dominant precipitation peak occurs between 1200 and 1800 UTC suggesting that convective precipitation prevails in most HPEs. The diurnal cycle of integrated water vapour during the mature stage of HPEs shows that the atmosphere remains wetter than average for most of the period and that only a decrease is seen after the afternoon precipitation peak. Negligible CAPE characterizes mean-seasonal conditions while the classical diurnal cycle with the peak in the early afternoon and much higher mean values occur during HPE events. Despite significant differences in the precipitation distribution and characteristics of the investigated subdomains, similar mechanisms are identified in relation to HPE environments and considerable contrasts compared to the mean-seasonal conditions.

Keywords

Heavy precipitation events Mediterranean region HyMeX Seasonal conditions Atmospheric water vapour 

Notes

Acknowledgments

This work is a contribution to the HyMeX program supported by MISTRALS and ANR IODA-MED Grant ANR-11-BS56-0005. The authors thank the HyMeX data base teams (ESPRI/IPSL and SEDOO/Observatoire Midi-Pyrénées) for their help in accessing the data, as well as all SOP1 field teams who performed measurements during this time. The authors acknowledge Meteo-France and the HyMeX program for supplying the HyMeX domain rainfall amount precipitation rain gauge data, sponsored by Grants MISTRALS/HyMeX and ANR-11-BS56-0005 IODA-MED project. The TRMM data used in this study were acquired using the GES–DISC Interactive Online Visualization ANd aNalysis Infrastructure (Giovanni) as part of the NASA’s Goddard Earth Sciences (GES) Data and Information Services Centre (DISC). We thank EUCLID (EUropean Cooperation for LIghtning Detection) for providing the lightning data. Finally, the authors wish to thank the Deutscher Wetterdienst (DWD) for providing the COSMO model code as well as initial and boundary data.

References

  1. Argence S, Lambert D, Richard E, Chaboureau JP, Söhne N (2008) Impact of initial conditions uncertainties on the predictability of heavy rainfall in the mediterranean: a case study. Q J R Meteorol Soc 134:1775–1788CrossRefGoogle Scholar
  2. Boehm U, Kuecken M, Ahrens W, Block A, Hauffe D, Keuler K, Rockel B, Will A (2006) CLM—the climate version of LM: brief description and long-term applications. COSMO Newsl 6:225–235Google Scholar
  3. Bougeault P, Binder P, Buzzi A, Dirks R, Houze R, Kuettner J, Smith RB, Steinacker R, Volkert H (2001) The MAP special observing period. Bull Am Meteorol Soc 82:433–462CrossRefGoogle Scholar
  4. Bresson R, Ricard D, Ducrocq V (2009) Idealized mesoscale numerical study of mediterranean heavy precipitating convective systems. Meteorol Atmos Phys 103:45–56CrossRefGoogle Scholar
  5. Brockhaus P, Lüthi D, Schär C (2008) Aspects of the diurnal cycle in a regional climate model. Meteorol Z 17(4):433–443CrossRefGoogle Scholar
  6. Browning KA (1990) Organization of clouds and precipitation in extra-tropical cyclones. In: Newton C, Holopainen E (eds) The Erik Palmen Memorial Volume. American Meteorological Society, Boston, pp 129–153Google Scholar
  7. Buzzi A, Tartaglione N, Malguzzi P (1998) Numerical simulation of the 1994 Piedmont flood: role of orography and moist processes. Mon Weather Rev 126:2369–2383CrossRefGoogle Scholar
  8. Buzzi A, Davolio S, Malguzzi P, Drofa O, Mastrangelo D (2014) Heavy rainfall episodes over Liguria of autumn 2011: numerical forecasting experiments Nat. Hazard Earth Syst Sci 14:1325–1340CrossRefGoogle Scholar
  9. Couhet JB, Romero R, Homar V, Ducrocq V, Ramis C (2001) Initiation of a severe thunderstorm over the mediterranean Sea. Atmos Res 100:603–620CrossRefGoogle Scholar
  10. Delrieu G, Nicol J, Yates E, Kirstetter PE, Creutin JD, Anquetin S, Obled C, Saulnier GM, Ducrocq V, Gaume E, Payrastre O, Andrieu H, Ayral PA, Bouvier C, Neppel L, Livet M, Lang M, du-Châtelet JP, Walpersdorf A, Wobrock W (2005) The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: a first case study for the Cévennes-Vivarais Mediterranean Hydrometeorological Observatory. J Hydrometeorol 6:34–52. doi: 10.1175/JHM-400.1 CrossRefGoogle Scholar
  11. Didier R, Ducrocq Véronique, Auger Ludovic (2012) A climatology of the mesoscale environment associated with heavily precipitating events over a northwestern Mediterranean area. J Appl Meteorol Climatol 51:468–488. doi: 10.1175/JAMC-D-11-017.1 CrossRefGoogle Scholar
  12. Doms G, Förstner J, Heise E, Herzog HJ, Mironov D, Raschendorfer M, Reinhardt T, Ritter B, Schrodin R, Schulz JP, Vogel G (2011) A description of the non-hydrostatic regional COSMO model, Part II: Physical Parameterization. Deutscher Wetterdienst: Offenbach, Germany. http://www.cosmo-model.org
  13. Doswell CA III, Brooks HE, Maddox RA (1996) Flash flood forecasting: an ingredients-based methodology. Wea Forecast 11:560–581. doi: 10.1175/1520-0434(1996)011<0560:FFFAIB>2.0.CO;2 CrossRefGoogle Scholar
  14. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubišić V, Gualdi S, Homar V, Ivančan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: a 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. doi: 10.1175/BAMS-D-12-00242.1 CrossRefGoogle Scholar
  15. Ducrocq V, Braud I, Davolio S, Ferretti R, Flamant C, Jansa A, Kalthoff N, Richard E, Taupier-Letage I, Ayral P-A, Belamari S, Berne A, Borga M, Boudevillain B, Bock O, Boichard J-L, Bouin M-N, Bousquet O, Bouvier C, Chiggiato J, Cimini D, Corsmeier U, Coppola L, Cocquerez P, Defer E, Delanoë J, Di Girolamo P, Doerenbecher A, Drobinski P, Dufournet Y, Fourrié N, Gourley JJ, Labatut L, Lambert D, Le Coz J, Marzano FS, Molinié G, Montani A, Nord G, Nuret M, Ramage K, Rison W, Roussot O, Said F, Schwarzenboeck A, Testor P, Van Baelen J, Vincendon B, Aran M, Tamayo J (2014) HyMeX-SOP1: the field campaign dedicated to heavy precipitation and flash flooding in the Northwestern Mediterranean. Bull Am Meteorol Soc 95:1083–1100. doi: 10.1175/BAMS-D-12-00244.1 CrossRefGoogle Scholar
  16. Duffourg F, Ducrocq V (2013) Assessment of the water supply to Mediterranean heavy precipitation: a method based on finely designed water budgets. Atmos Sci Lett 14:133–138. doi: 10.1002/asl2.429 CrossRefGoogle Scholar
  17. Duffourg F, Ducrocq V (2011) Origin of the moisture feeding the Heavy Precipitating Systems over Southeastern France. Nat Hazards Earth Syst Sci 11:1163–1178. doi: 10.5194/nhess-11-1163-2011 CrossRefGoogle Scholar
  18. Ferretti R, Low-Nam S, Rotunno R (2000) Numerical simulations of the Piedmont flood of 4–6 November 1994. Tellus 52A:162–180CrossRefGoogle Scholar
  19. Ferretti R, Panegrossi G, Rotunno R, Pichelli E, Marzano FS, Dietrich S, Picciotti E, Vulpiani G (2012) An analysis of three disastrous rain events occurred in Italy: Rome, Cinque Terre and Genoa. In: Proceedings of the 14th EGU Plinius Conference on Mediterranean Storms and MEDEX Final Conference, Palma de Mallorca (Spain)Google Scholar
  20. Ferretti R, Pichelli E, Gentile S, Maiello I, Cimini D, Davolio S, Miglietta MM, Panegrossi G, Baldini L, Pasi F, Marzano FS, Zinzi A, Mariani S, Casaioli M, Bartolini G, Loglisci N, Montani A, Marsigli C, Manzato A, Pucillo A, Ferrario ME, Colaiuda V, Rotunno R (2014) Overview of the first HyMeX special observation period over Italy: observations and model results. Hydrol Earth Syst Sci 18:1953–1977CrossRefGoogle Scholar
  21. Fosser G, Khodayar S, Berg P (2014) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44:45–60. doi: 10.1007/s00382-014-2242-1 CrossRefGoogle Scholar
  22. Fosser G, Khodayar S, Berg P (2015) Climate Change in the next 30 years: what can a convective permitting model tell us that we did not already know? Clim Dyn (accepted) Google Scholar
  23. Grasselt R, Schuttemeyer D, Warrach-Sagi K, Ament F, Simmer C (2008) Validation of TERRA-ML with discharge measurements. Meteorol Z 17(6):763–773CrossRefGoogle Scholar
  24. Grazzini F (2007) Predictability of a large-scale flow conducive to extreme precipitation over the western Alps. Meteorol Atmos Phys 95:123–138CrossRefGoogle Scholar
  25. Huffman GJ, Bolvin DT, Nelkin EJ, Wolff DB, Adler RF, Gu G, Hong Y, Bowman KP, Stocker EF (2007) The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined sensor precipitation estimates at fine scales. J Hydrometeorol 8:38–55. doi: 10.1175/JHM560.1 CrossRefGoogle Scholar
  26. Isotta FA, Frei C, Weilguni V, Percec Tadic M, Lassegues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertacnik G (2013) The climate of daily precipitation inthe Alps: development and analysis of a high-resolution griddataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675CrossRefGoogle Scholar
  27. Jansa A, Genovés A, Picornell MA, Campins J, Riosalido R, Carretero O (2001) Western Mediterranean cyclones and heavy rain. Part 2: statistical approach. Meteorol Appl 8:43–56CrossRefGoogle Scholar
  28. Khodayar S, Raff F, Kalthoff N (2015) Diagnostic study of a high precipitation event in the western mediterranean region: adequacy of current operational networks. Q J R Meteorol Soc. doi: 10.1002/qj.2600 Google Scholar
  29. Kummerow C, BarnesW Kozu T, Shiue J, Simpson J (1998) The tropical rainfall measuring mission (TRMM) sensor package. J Atmos Ocean Technol 15:809–817CrossRefGoogle Scholar
  30. Llasat MC, Llasat-Botija M, Prat MA, Porcu F, Price C, Mugnai A, Lagouvardos K, Kotroni V, Katsanos D, Michaelides S, Yair Y, Savvidou K, Nicolaides K (2010) High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci 23:47–55CrossRefGoogle Scholar
  31. Majewski D, Liermann D, Prohl P, Ritter B, Buchhold M, Hanisch T, Paul G, Wergen W, Baumgartner J (2002) The operational global icosahedral-hexagonal gridpoint model GME: description and high-resolution test. Mon Weather Rev 130:319–338CrossRefGoogle Scholar
  32. Martínez C, Campins J, Jansà A, Genoves A (2008) Heavy rain events in the Western Mediterranean: an atmospheric pattern classification. Adv Sci Res 2:61–64. doi: 10.5194/asr-2-61-2008 CrossRefGoogle Scholar
  33. Martius O, Zenklusen E, Schwierz C, Davies HC (2006) Episodes of Alpine heavy precipitation with an overlying elongated stratospheric intrusion: a climatology. Int J Climatol 26:1149–1164CrossRefGoogle Scholar
  34. Mellor GL, Yamada Tetsuji (1974) A hierarchy of turbulence closure models for planetary boundary layers. J Atmos Sci 31:1791–1806. doi: 10.1175/1520-0469(1974)031<1791:AHOTCM>2.0.CO;2 CrossRefGoogle Scholar
  35. Mölg T, Chiang JCH, Gohm A, Cullen NJ (2009) Temporal precipitation variability versus altitude on a tropical high mountain: observations and mesoscale atmospheric modelling. Q J R Meteorol Soc 135:1439–1455. doi: 10.1002/qj.461 CrossRefGoogle Scholar
  36. Moncrieff MW, Miller MJ (1976) The dynamics and simulation of tropical cumulonimbus and squall lines. Q J R Meteorol Soc 102:373–394CrossRefGoogle Scholar
  37. Nuissier O, Ducrocq V, Ricard D, Lebeaupin C, Anquetin S (2008) A numerical study of three catastrophic precipitating events over southern France. I: numerical framework and synoptic ingredients. Q J R Meteorol Soc 134:111–130CrossRefGoogle Scholar
  38. Nuissier O, Joly B, Joly A, Ducrocq V (2011) A statistical downscaling to identify the large scale circulation patterns associated with Heavy Precipitation Events over southern France. Q J R Meteorol Soc 137:1812–1827CrossRefGoogle Scholar
  39. Pfahl S (2014) Characterising the relationship between weather extremes in Europe and synoptic circulation features. Nat Hazards Earth Syst Sci 14:1461–1475. doi: 10.5194/nhess-14-1461-2014 CrossRefGoogle Scholar
  40. Pfahl S, Wernli H (2012a) Quantifying the relevance of atmospheric blocking for co-located temperature extremes in the Northern Hemisphere on (sub-)daily time scales. Geophys Res Lett 39:L12807. doi: 10.1029/2012GL052261 CrossRefGoogle Scholar
  41. Pfahl S, Wernli H (2012b) Quantifying the relevance of cyclones for precipitation extremes. J Clim 25:6770–6780. doi: 10.1175/JCLI-D-11-00705.1 CrossRefGoogle Scholar
  42. Ramis C, Homar V, Amengual A, Romero R, Alonso S (2013) Daily precipitation records over mainland Spain and the Balearic Islands. Nat Hazards Earth Syst Sci 13:2483–2491. doi: 10.5194/nhess-13-2483-2013 CrossRefGoogle Scholar
  43. Raveh-Rubin S, Wernli H (2015) Large-scale wind and precipitation extremes in the Mediterranean: a climatological analysis for 1979–2012. Q J R Meteorol Soc. doi: 10.1002/qj.2531 Google Scholar
  44. Rebora N, Molini L, Casella E, Comellas A, Fiori E, Pignone F, Siccardi F, Silvestro F, Tanelli S, Parodi A (2013) Extreme rainfall in the mediterranean: What can we learn from observations. J Hydrometeorol 14:906–922CrossRefGoogle Scholar
  45. Ricard D, Ducrocq V, Auger L (2012) A climatology of the mesoscale environment associated with heavily precipitating events over a Northwestern Mediterranean Area. Int J Appl Meteorol Climatol Am Meteorol Soc 51(3):468–488. doi: 10.1175/JAMC-D-11-017.1 CrossRefGoogle Scholar
  46. Ritter B, Geleyn JF (1992) A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon Weather Rev 120:303–325CrossRefGoogle Scholar
  47. Roe GH (2005) Orographic precipitation. Annu Rev Earth Planet Sci 33:645–671CrossRefGoogle Scholar
  48. Romero R, Sumner G, Ramis C, Genovés A (1999) A classification of the atmospheric circulation patterns producing significant daily rainfall in the Spanish Mediterranean area. Int J Climatol 19:765–785CrossRefGoogle Scholar
  49. Romero R, Doswell CA, Ramis C (2000) Mesoscale numerical study of two cases of longlived quasi-stationary convective system over eastern Spain. Mon Weather Rev 128:3731–3751CrossRefGoogle Scholar
  50. Romero R, Gaya M, Doswell CA III (2007) European climatology of severe convective storm environmental parameters: a test for significant tornado events. Atmos Res 83:389–404CrossRefGoogle Scholar
  51. Rotunno R, Ferretti R (2001) Mechanisms of intense Alpine rainfall. J Atmos Sci 58:1732–1749CrossRefGoogle Scholar
  52. Rotunno R, Houze RA (2007) Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q J R Meteorol Soc 133:811–830CrossRefGoogle Scholar
  53. Rudari R, Entekhabi D, Roth G (2004) Terrain and multiple-scale interaction as factors in generating extreme precipitation events. J Hydrometeorol 5:390–404CrossRefGoogle Scholar
  54. Steppeler J, Doms G, Schattler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the non hydrostatic model LM. Meteorol Atmos Phys 82:75–96CrossRefGoogle Scholar
  55. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779–1800CrossRefGoogle Scholar
  56. Trigo IF, Bigg GR, Davies TD (2002) Climatology of cyclogenesis mechanisms in the mediterranean. Mon Weather Rev 130:549–569. doi: 10.1175/1520-0493(2002)130<0549:COCMIT>2.0.CO;2 CrossRefGoogle Scholar
  57. Winschall A, Pfahl S, Sodemann H, Wernli H (2012) Impact of North Atlantic evaporation hot spots on southern Alpine heavy precipitation events. Q J R Meteorol Soc 138(666):1245–1258. doi: 10.1002/qj.987 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Samiro Khodayar
    • 1
  • Norbert Kalthoff
    • 1
  • Christoph Kottmeier
    • 1
  1. 1.Institute of Meteorology and Climate Research (IMK-TRO)Karlsruhe Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations