Advertisement

Climate Dynamics

, Volume 47, Issue 12, pp 3783–3801 | Cite as

North Pacific decadal variability in the CMIP5 last millennium simulations

  • Laura E. Fleming
  • Kevin J. Anchukaitis
Article

Abstract

The Pacific ocean–atmosphere system exerts an important influence on the climate of Asia and North America, but the limited length of the observational record prevents a complete understanding of its bidecadal and multidecadal time scales. Paleoclimate reconstructions provide one source of information on longer time scales, although they differ in their estimation of the behavior of the Pacific decadal oscillation (PDO) prior to the instrumental period. Forced general circulation model simulations offer complementary long-term perspectives on both the history and dynamics of this important mode of variability. Here, we analyze the PDO in the ensemble of CMIP5/PMIP3 last millennium (past1000 + historical) simulations. We evaluate the modeled spatial, temporal, and spectral characteristics of this mode, as well as teleconnections between North Pacific variability and global climate. All models produce a mode of North Pacific variability over the last millennium with spatial patterns and spectral power density similar to observations. CCSM, FGOALS, and IPSL best reproduce observed spatial patterns, spectral characteristics, and teleconnections to terrestrial regions used in paleoclimate proxy reconstructions. In these simulations, the PDO shows no consistent response to solar or volcanic forcing.

Keywords

Decadal Pacific PDO General circulation models CMIP5 Last millennium  

Notes

Acknowledgments

We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This research was funded by a grant for the US National Science Foundation (AGS-1159430). LEF participated in this research as part of Northeastern University’s Co-op and the Woods Hole Oceanographic Guest Student program.

Supplementary material

382_2016_3041_MOESM1_ESM.pdf (5 mb)
Supplementary material 1 (pdf 5080 KB)

References

  1. Ault TR, Deser C, Newman M, Emile-Geay J (2013) Characterizing decadal to centennial variability in the equatorial pacific during the last millennium. Geophys Res Lett 40(13):3450–3456. doi: 10.1002/grl.50647 CrossRefGoogle Scholar
  2. Biondi F, Gershunov A, Cayan DR (2001) North Pacific decadal climate variability since 1661. J Clim 14:5–10CrossRefGoogle Scholar
  3. Bothe O, Jungclaus JH, Zanchettin D (2013) Consistency of the multi-model CMIP5/PMIP3-past1000 ensemble. Clim Past 9(6):2471–2487. doi: 10.5194/cp-9-2471-2013 CrossRefGoogle Scholar
  4. Brown PT, Li W, Li L, Ming Y (2014) Top-of-atmosphere radiative contribution to unforced decadal global temperature variability in climate models. Geophys Res Lett 41(14):5175–5183. doi: 10.1002/2014gl060625 CrossRefGoogle Scholar
  5. Buckley B, Anchukaitis K, Penny D, Fletcher R, Cook E, Sano M, Nam L, Wichienkeeo A, Minh T, Hong T (2010) Climate as a contributing factor in the demise of Angkor, Cambodia. Proc Nat Acad Sci 107(15):6748–6752CrossRefGoogle Scholar
  6. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9(9):2190–2196CrossRefGoogle Scholar
  7. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan R, Yin X, Gleason B, Vose R, Rutledge G, Bessemoulin P et al (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28CrossRefGoogle Scholar
  8. Compo JWGP, Sardeshmukh P (2006) Feasibility of a 100 year reanalysis using only surface pressure data. Bull Am Meteorol Soc 87:175–190CrossRefGoogle Scholar
  9. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  10. Crowley TJ, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the little ice age. PAGES News 16(2):22–23Google Scholar
  11. D’Arrigo R, Wilson R (2006) On the Asian expression of the PDO. Int J Climatol 26(12):1607–1617CrossRefGoogle Scholar
  12. D’Arrigo R, Villalba R, Wiles G (2001) Tree-ring estimates of Pacific decadal climate variability. Clim Dyn 18:219–224CrossRefGoogle Scholar
  13. Deser C, Phillips AS, Alexander MA (2010) Twentieth century tropical sea surface temperature trends revisited. Geophys Res Lett. doi: 10.1029/2010GL043321 Google Scholar
  14. Deser C, Phillips AS, Tomas RA, Okumura YM, Alexander MA, Capotondi A, Scott JD, Kwon YO, Ohba M (2012) ENSO and pacific decadal variability in the community climate system model version 4. J Clim 25(8):2622–2651. doi: 10.1175/jcli-d-11-00301.1 CrossRefGoogle Scholar
  15. Deser C, Phillips AS, Alexander MA, Smoliak BV (2014) Projecting North American climate over the next 50 years: uncertainty due to internal variability. J Clim 27(6):2271–2296CrossRefGoogle Scholar
  16. Dufresne JL, Foujols MA, Denvil S, Caubel A, Marti O, Aumont O, Balkanski Y, Bekki S, Bellenger H, Benshila R, Bony S, Bopp L, Braconnot P, Brockmann P, Cadule P, Cheruy F, Codron F, Cozic A, Cugnet D, Noblet N, Duvel JP, Ethé C, Fairhead L, Fichefet T, Flavoni S, Friedlingstein P, Grandpeix JY, Guez L, Guilyardi E, Hauglustaine D, Hourdin F, Idelkadi A, Ghattas J, Joussaume S, Kageyama M, Krinner G, Labetoulle S, Lahellec A, Lefebvre MP, Lefevre F, Levy C, Li ZX, Lloyd J, Lott F, Madec G, Mancip M, Marchand M, Masson S, Meurdesoif Y, Mignot J, Musat I, Parouty S, Polcher J, Rio C, Schulz M, Swingedouw D, Szopa S, Talandier C, Terray P, Viovy N, Vuichard N (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165. doi: 10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  17. Ebisuzaki W (1997) A method to estimate the statistical significance of a correlation when the data are serially correlated. J Clim 10(9):2147–2153CrossRefGoogle Scholar
  18. Emile-Geay J, Seager R, Cane MA, Cook ER, Haug GH (2008) Volcanoes and enso over the past millennium. J Clim 21(13):3134–3148CrossRefGoogle Scholar
  19. Emile-Geay J, Cobb KM, Mann ME, Wittenberg AT (2013) Estimating central equatorial Pacific SST variability over the past millennium. Part II: Reconstructions and implications. J Clim 26(7):2329–2352CrossRefGoogle Scholar
  20. Evans MN, Cane MA, Schrag DP, Kaplan A, Linsley BK, Villalba R, Wellington GM (2001a) Support for tropically-driven Pacific decadal variability based on paleoproxy evidence. Geophys Res Lett 28:3689–3692CrossRefGoogle Scholar
  21. Evans MN, Kaplan A, Cane MA, Villalba R (2001b) Globality and optimality in climate field reconstructions from proxy data. In: Markgraf V (ed) Interhemispheric climate linkages. Cambridge University Press, Cambridge, pp 53–72CrossRefGoogle Scholar
  22. Evans MN, Kaplan A, Cane MA (2002) Pacific sea surface temperature field reconstruction from coral \(\rm\delta ^{18}O\) data using reduced space objective analysis. Paleoceanography. doi: 10.1029/2000PA000590 Google Scholar
  23. Gao C, Robock A, Ammann CM (2008) Volcanic forcing of climate over the past 1500 years: an improved ice-core-based index for climate models. J Geophys Res 113:D23111CrossRefGoogle Scholar
  24. Gao CC, Robock A, Self S, Witter JB, Steffenson JP, Clausen HB, Siggaard-Andersen ML, Johnsen S, Mayewski PA, Ammann C (2006) The 1452 or 1453 AD Kuwae eruption signal derived from multiple ice core records: greatest volcanic sulfate event of the past 700 years. J Geophys Res Atmos 111:D12107CrossRefGoogle Scholar
  25. Garreaud RD, Battisti DS (1999) Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation. J Clim 12:2113–2123CrossRefGoogle Scholar
  26. Gedalof Z, Smith DJ (2001) Interdecadal climate variability and regime-scale shifts in Pacific North America. Geophys Res Lett 28:1515–1518. doi: 10.1029/2000GL011779 CrossRefGoogle Scholar
  27. Gedalof Z, Mantua NJ, Peterson DL (2002) A multi-century perspective of variability in the Pacific decadal oscillation: new insights from tree rings and coral. Geophys Res Lett. doi: 10.1029/2002GL015824 Google Scholar
  28. Gershunov A, Barnett TP (1998) Interdecadal modulation of ENSO teleconnections. Bull Am Meteorol Soc 79(12):2715–2725CrossRefGoogle Scholar
  29. Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg HD, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners KH, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J Adv Model Earth Syst 5(3):572–597. doi: 10.1002/jame.20038 CrossRefGoogle Scholar
  30. Gu G, Adler RF (2012) Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability? Clim Dyn 40(11–12):3009–3022. doi: 10.1007/s00382-012-1443-8 Google Scholar
  31. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys 48:RG4004. doi: 10.1029/2010RG000345 CrossRefGoogle Scholar
  32. Hunt BG (2008) Secular variation of the Pacific Decadal Oscillation, the North Pacific Oscillation and climatic jumps in a multi-millennial simulation. Clim Dyn 30(5):467–483. doi: 10.1007/s00382-007-0307-0 CrossRefGoogle Scholar
  33. Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res Oceans (1978–2012) 103(C9):18567–18589CrossRefGoogle Scholar
  34. Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the north Atlantic sector. Nature 453(7191):84–88. doi: 10.1038/nature06921 CrossRefGoogle Scholar
  35. Kipfmueller KF, Larson ER, George SS (2012) Does proxy uncertainty affect the relations inferred between the pacific decadal oscillation and wildfire activity in the western united states? Geophys Res Lett. doi: 10.1029/2011gl050645 Google Scholar
  36. Knutson TR, Zeng F, Wittenberg AT (2013) Multimodel assessment of regional surface temperature trends: CMIP3 and CMIP5 twentieth-century simulations. J Clim 26(22):8709–8743CrossRefGoogle Scholar
  37. Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N, Teng H (2013a) Last millennium climate and its variability in CCSM4. J Clim 26(4):1085–1111. doi: 10.1175/jcli-d-11-00326.1 CrossRefGoogle Scholar
  38. Landrum L, Otto-Bliesner BL, Wahl ER, Conley A, Lawrence PJ, Rosenbloom N, Teng H (2013b) Last millennium climate and its variability in CCSM4. J Clim 26(4):1085–1111. doi: 10.1175/jcli-d-11-00326.1 CrossRefGoogle Scholar
  39. Lavigne F, Degeai JP, Komorowski JC, Guillet S, Robert V, Lahitte P, Oppenheimer C, Stoffel M, Vidal CM, Surono Pratomo I, Wassmer P, Hajdas I, Hadmoko DS, de Belizal E (2013) Source of the great A.D. 1257 mystery eruption unveiled, Samalas volcano, Rinjani volcanic complex, Indonesia. Proc Natl Acad Sci 110(42):16742–16747. doi: 10.1073/pnas.1307520110 CrossRefGoogle Scholar
  40. Livezey RE, Chen WY (1983) Statistical field significance and its determination by monte carlo techniques. Month Weather Rev 111(1):46–59. doi: 10.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;210.1175/1520-0493(1983)111<0046:SFSAID>2.0.CO;2
  41. Lyon B, Barnston AG, DeWitt DG (2013) Tropical pacific forcing of a 1998–1999 climate shift: observational analysis and climate model results for the boreal spring season. Clim Dyn 43(3–4):893–909. doi: 10.1007/s00382-013-1891-9 Google Scholar
  42. Mantua NJ, Hare SR (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44CrossRefGoogle Scholar
  43. Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079CrossRefGoogle Scholar
  44. McAfee SA (2014) Consistency and the lack thereof in Pacific decadal oscillation impacts on North American winter climate. J Clim 27(19):7410–7431. doi: 10.1175/jcli-d-14-00143.1 CrossRefGoogle Scholar
  45. McCabe GJ, Palecki MA, Betancourt J (2004a) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Natl Acad Sci USA 101(12):4136–4141CrossRefGoogle Scholar
  46. McCabe GJ, Palecki MA, Betancourt JL (2004b) Pacific and Atlantic Ocean influences on multidecadal drought frequency in the United States. Proc Nat Acad Sci 101(12):4136–4141. doi: 10.1073/pnas.0306738101 CrossRefGoogle Scholar
  47. Meehl GA, Arblaster JM, Branstator G (2012) Mechanisms contributing to the warming hole and the consequent U.S. East–West differential of heat extremes. J Clim 25(18):6394–6408. doi: 10.1175/jcli-d-11-00655.1 CrossRefGoogle Scholar
  48. Meehl GA, Hu A, Arblaster JM, Fasullo J, Trenberth KE (2013) Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation. J Clim 26(18):7298–7310. doi: 10.1175/jcli-d-12-00548.1 CrossRefGoogle Scholar
  49. Minobe S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. Geophys Res Lett 24:683–686CrossRefGoogle Scholar
  50. Minobe S (1999) Resonance in bidecadal and pentadecadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophys Res Lett 26(7):855–858CrossRefGoogle Scholar
  51. Neumaier A, Schneider T (2001) Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans Math Softw 27(1):27–57CrossRefGoogle Scholar
  52. Newman M, Compo GP, Alexander MA (2003) ENSO-forced variability of the pacific decadal oscillation. J Clim 16(23):3853–3857. doi: 10.1175/1520-0442(2003)016<3853:evotpd>2.0.co;210.1175/1520-0442(2003)016<3853:evotpd>2.0.co;2
  53. Park JH, An SI, Yeh SW, Schneider N (2013) Quantitative assessment of the climate components driving the pacific decadal oscillation in climate models. Theor Appl Climatol 112(3–4):431–445CrossRefGoogle Scholar
  54. Peterson WT, Schwing FB (2003) A new climate regime in northeast Pacific ecosystems. Geophys Res Lett. doi: 10.1029/2003GL017528 Google Scholar
  55. Phipps SJ, McGregor HV, Gergis J, Gallant AJE, Neukom R, Stevenson S, Ackerley D, Brown JR, Fischer MJ, van Ommen TD (2013) Paleoclimate data-model comparison and the role of climate forcings over the past 1500 years. J Clim 26(18):6915–6936. doi: 10.1175/jcli-d-12-00108.1 CrossRefGoogle Scholar
  56. Polade SD, Gershunov A, Cayan DR, Dettinger MD, Pierce DW (2013) Natural climate variability and teleconnections to precipitation over the Pacific-North American region in CMIP3 andCMIP5 models. Geophys Res Lett 40(10):2296–2301. doi: 10.1002/grl.50491 CrossRefGoogle Scholar
  57. Priestley MB (1965) Evolutionary spectra and non-stationary processes. J R Stat Soc Ser B (Methodol) 27(2):204–237Google Scholar
  58. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate ChangeGoogle Scholar
  59. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res. doi: 10.1029/2002jd002670 Google Scholar
  60. Rayner NA, Brohan P, Parker DE, Folland CK, Kennedy JJ, Vanicek M, Ansell TJ, Tett SFB (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the Mid-Nineteenth Century: the HadSST2 dataset. J Clim 19(3):446–469. doi: 10.1175/jcli3637.1 CrossRefGoogle Scholar
  61. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2011) Climate forcing reconstructions for use in PMIP simulations of the last millennium (v1.0). Geosci Model Dev 4:33–45. doi: 10.5194/gmd-4-33-2011 CrossRefGoogle Scholar
  62. Schmidt GA, Jungclaus JH, Ammann CM, Bard E, Braconnot P, Crowley TJ, Delaygue G, Joos F, Krivova NA, Muscheler R, Otto-Bliesner BL, Pongratz J, Shindell DT, Solanki SK, Steinhilber F, Vieira LEA (2012) Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geoscientific Model. Development 5(1):185–191Google Scholar
  63. Schmidt GA, Kelley M, Nazarenko L, Ruedy R, Russell GL, Aleinov I, Bauer M, Bauer SE, Bhat MK, Bleck R, Canuto V, Chen YH, Cheng Y, Clune TL, Genio AD, de Fainchtein R, Faluvegi G, Hansen JE, Healy RJ, Kiang NY, Koch D, Lacis AA, LeGrande AN, Lerner J, Lo KK, Matthews EE, Menon S, Miller RL, Oinas V, Oloso AO, Perlwitz JP, Puma MJ, Putman WM, Rind D, Romanou A, Sato M, Shindell DT, Sun S, Syed RA, Tausnev N, Tsigaridis K, Unger N, Voulgarakis A, Yao MS, Zhang J (2014) Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J Adv Model Earth Syst 6(1):141–184. doi: 10.1002/2013ms000265 CrossRefGoogle Scholar
  64. Schneider N, Cornuelle BD (2005) The forcing of the Pacific decadal oscillation. J Clim 18(21):4355–4373. doi: 10.1175/jcli3527.1 CrossRefGoogle Scholar
  65. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Rudolf B, Ziese M (2011) GPCC Full Data Reanalysis Version 6.0 at 1.0: monthly land-surface precipitation from Rain-Gauges built on GTS-based and historic data. doi: 10.5676/DWD_GPCC/FD_M_V6_050
  66. Schneider U, Becker A, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115(1–2):15–40. doi: 10.1007/s00704-013-0860-x Google Scholar
  67. Sheffield J, Camargo SJ, Fu R, Hu Q, Jiang X, Johnson N, Karnauskas KB, Kim ST, Kinter J, Kumar S, Langenbrunner B, Maloney E, Mariotti A, Meyerson JE, Neelin JD, Nigam S, Pan Z, Ruiz-Barradas A, Seager R, Serra YL, Sun DZ, Wang C, Xie SP, Yu JY, Zhang T, Zhao M (2013) North american climate in CMIP5 experiments. Part II: evaluation of historical simulations of intraseasonal to decadal variability. J Clim 26(23):9247–9290. doi: 10.1175/jcli-d-12-00593.1 CrossRefGoogle Scholar
  68. Smerdon JE (2011) Climate models as a test bed for climate reconstruction methods: pseudoproxy experiments. Wiley Interdiscip Rev Clim Change 3(1):63–77. doi: 10.1002/wcc.149 CrossRefGoogle Scholar
  69. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21(10):2283–2296. doi: 10.1175/2007jcli2100.1 CrossRefGoogle Scholar
  70. St. George S, Ault T (2011) Is energetic decadal variability a stable feature of the central Pacific Coast’s winter climate? J Geophys Res 116:D12102. doi: 10.1029/2010JD015325 CrossRefGoogle Scholar
  71. Steiger NJ, Hakim GJ, Steig EJ, Battisti DS, Roe GH (2014) Assimilation of time-averaged pseudoproxies for climate reconstruction. J Clim 27(1):426–441. doi: 10.1175/jcli-d-12-00693.1 CrossRefGoogle Scholar
  72. Steinhilber F, Beer J, Fröhlich C (2009) Total solar irradiance during the holocene. Geophys Res Lett. doi: 10.1029/2009gl040142 Google Scholar
  73. Stoner AMK, Hayhoe K, Wuebbles DJ (2009) Assessing general circulation model simulations of atmospheric teleconnection patterns. J Clim 22(16):4348–4372. doi: 10.1175/2009jcli2577.1 CrossRefGoogle Scholar
  74. Swetnam TW, Betancourt JL (2010) Mesoscale disturbance and ecological response to decadal climatic variability in the American Southwest. In: Tree rings and natural hazards. Springer, Berlin, pp 329–359. doi: 10.1007/978-90-481-8736-2_32
  75. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  76. Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096CrossRefGoogle Scholar
  77. Tierney JE, Abram NJ, Anchukaitis KJ, Evans MN, Giry C, Kilbourne KH, Saenger CP, Wu HC, Zinke J (2015) Tropical sea surface temperatures for the past four centuries reconstructed from coral archives. Paleoceanography. doi: 10.1002/2014PA002717 Google Scholar
  78. Vieira LEA, Solanki SK, Krivova NA, Usoskin I (2011) Evolution of the solar irradiance during the Holocene. Astronomy Astrophys. doi: 10.1051/0004-6361/201015843 Google Scholar
  79. Wang H, Schubert S, Suarez M, Chen J, Hoerling M, Kumar A, Pegion P (2009) Attribution of the seasonality and regionality in climate trends over the United States during 1950–2000. J Clim 22(10):2571–2590. doi: 10.1175/2008jcli2359.1 CrossRefGoogle Scholar
  80. Weaver SJ (2013) Factors associated with decadal variability in great plains summertime surface temperatures. J Clim 26(1):343–350. doi: 10.1175/jcli-d-11-00713.1 CrossRefGoogle Scholar
  81. Wise EK (2014) Tropical Pacific and Northern Hemisphere influences on the coherence of Pacific decadal oscillation reconstructions. Int J Climatol 35(1):154–160. doi: 10.1002/joc.3966 CrossRefGoogle Scholar
  82. Xiao-Ge X, Tong-Wen W, Jiang-Long L, Zai-Zhi W, Wei-Ping L, Fang-Hua W (2012) How well does BCC\_CSM1.1 reproduce the 20th century climate change over China? Atmos Ocean Sci Lett 6(1):21–26Google Scholar
  83. Yim BY, Kwon M, Min HS, Kug JS (2015) Pacific decadal oscillation and its relation to the extratropical atmospheric variation in CMIP5. Clim Dyn 44(5–6):1521–1540. doi: 10.1007/s00382-014-2349-4 CrossRefGoogle Scholar
  84. Zanchettin D, Rubino A, Matei D, Bothe O, Jungclaus JH (2012) Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Clim Dyn 40(5–6):1301–1318. doi: 10.1007/s00382-012-1361-9 Google Scholar
  85. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–93. J Clim 10(5):1004–1020CrossRefGoogle Scholar
  86. Zhou T, Li B, Man W, Zhang L, Zhang J (2011) A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model. Chin Sci Bull 56(28–29):3028–3041. doi: 10.1007/s11434-011-4641-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Joint Program in Oceanography/Applied Ocean Science and Engineering, Massachusetts Institute of TechnologyWoods Hole Oceanographic InstitutionWoods HoleUSA
  3. 3.School of Geography and Development and Laboratory of Tree Ring ResearchUniversity of ArizonaTucsonUSA

Personalised recommendations