Climate Dynamics

, Volume 47, Issue 12, pp 3693–3712 | Cite as

Sources of skill in near-term climate prediction: generating initial conditions

  • A. CarrassiEmail author
  • V. Guemas
  • F. J. Doblas-Reyes
  • D. Volpi
  • M. Asif


This study investigates the role of different areas of the ocean in driving the climate variability. The impact of both global and regional ocean nudging on the climate reconstruction obtained with the climate model EC-Earth v2.3 is studied over the period 1960–2012. Ocean temperature and salinity below the mixed layer are relaxed toward the monthly averages from the ORAS4 ocean reanalysis. Three coupled ocean–atmosphere simulations are considered: (1) global ocean nudging, (2) nudging in the global upper ocean (above 2000 m) and (3) nudging in the mid-latitude ocean and at full ocean depth. The experimental setup allows for identifying local and remote effects of nudging on different geographical areas. The validation is based on the correlation coefficients and the root mean square error skill score and concerns the following variables: ocean heat content, ocean barotropic streamfunction, intensity of the ocean gyres and indexes of convection, sea ice extension, near-surface air and sea surface temperature, and El Niño–Southern Oscillation 3.4 index. The results can be summarized as follows: (1) the positive impact on the reconstruction of the ocean state is found almost everywhere and for most of the analyzed variables, including unconstrained variables and/or regions, (2) deep-ocean nudging shows low impact on sea-surface temperature but a significant impact on the ocean circulation, (3) mid-latitude ocean nudging shows systematically the worst performance pointing at the importance of the poles and tropics in reconstructing the global ocean.


Seasonal-to-decadal prediction Climate dynamics Initialization methods 



A. Carrassi was financed through the IEF Marie Curie Project INCLIDA of the FP7. This work was supported by the EU-funded SPECS (FP7-ENV-2012- 308378), the MINECO-funded PICA-ICE (CGL2012-31987) Projects, and EU-FP7 Project SANGOMA under Grant Agreement No. 283580.


  1. Auroux D, Blum J (2008) A nudging-based data assimilation method: the back and forth nudging (BFN) algorithm. Nonlinear Process Geophys 15:305–319CrossRefGoogle Scholar
  2. Balmaseda M, Mogensen K, Weaver A (2013) Evaluation of the ECMWF ocean reanalysis system ORAS4. Q J R Meteorol Soc 139:1132–1161. doi: 10.1002/qj.2063 CrossRefGoogle Scholar
  3. Booth B, Dunstone N, Halloran P, Andrews T, Bellouin N (2012) Aerosols implicated as a prime driver of twentieth-century north atlantic climate variability. Nature 484:228–232CrossRefGoogle Scholar
  4. Brodeau L, Barnier B, Treguier AM, Penduff T, Gulev S (2010) An ERA40-based atmospheric forcing for global ocean circulation models. Ocean Model 31:88–104CrossRefGoogle Scholar
  5. Carrassi A, Weber R, Guemas V, Doblas-Reyes F, Asif M, Volpi D (2014) Full-field and anomaly initialization using a low-order climate model: a comparison and proposals for advanced formulations. Nonlinear Process Geophys 21:521–537CrossRefGoogle Scholar
  6. Challinor A, Slingo J, Wheeler T, DoblasReyes F (2005) Probabilistic simulations of crop yield over western india using the demeter seasonal hindcast ensembles. Tellus A 57(3):498–512. doi: 10.1111/j.1600-0870.2005.00126.x CrossRefGoogle Scholar
  7. Daron JD (2012) Examining the decision-relevance of climate model information for the insurance industry. Ph.D. thesis, The London School of Economics and Political ScienceGoogle Scholar
  8. Doblas-Reyes F, Andreu-Burillo I, Chikamoto Y, Garca-Serrano J, Guemas V, Kimoto M, Mochizuki T, Rodrigues L, van Oldenborgh G (2013a) Initialized near-term regional climate change prediction. Nat Commun 4:1715CrossRefGoogle Scholar
  9. Doblas-Reyes F, García-Serrano J, Lienert F, Biescas AP, Rodrigues L (2013b) Seasonal climate predictability and forecasting: status and prospects. WIREs Clim Change 4:245–268CrossRefGoogle Scholar
  10. Doblas-Reyes FJ, Balmaseda MA, Weisheimer A, Palmer TN (2011) Decadal climate prediction with the European Centre for Medium Range Weather Forecasts coupled forecast system: impact of ocean observations. J Geophys Res. doi: 10.1029/2010JD015394 Google Scholar
  11. Dunstone N, Smith D (2010) Impact of atmosphere and subsurface ocean data on decadal climate prediction. Geophys Res Lett 37(L02):709Google Scholar
  12. Ethe C, Aumont O, Foujols MA, Levy M (2006) NEMO reference manual, tracer component: NEMO-TOP. Preliminary version. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL). France 28:1288–1619Google Scholar
  13. Fan Y, van den Dool H (2008) A global monthly land surface air temperature analysis for 1948-present. J Geophys Res. doi: 10.1029/2007JD008470 Google Scholar
  14. Fichefet T, Maqueda MAM (1997) Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics. J Geophys Res 102:12,609–12,646CrossRefGoogle Scholar
  15. García-Morales M, Dubus L (2007) Forecasting precipitation for hydroelectric power management: how to exploit GCM’s seasonal ensemble forecasts. Int J Climatol 12(27):1691–1705. doi: 10.1002/joc.1608 CrossRefGoogle Scholar
  16. Germe A, Chevallier M, y Mélia DS, Sanchez-Gomez E (2014) Interannual predictability of arctic sea ice in a global climate model: regional contrasts and temporal evolution. Clim Dyn. doi: 10.1007/s00382-014-2071-2 Google Scholar
  17. Goosse H, Fichefet T (1999) Importance of ice-ocean interactions for the global ocean circulation: a model study. J Geophys Res 104:23,337–23,355CrossRefGoogle Scholar
  18. Guemas V, Doblas-Reyes F, Mogensen K, Tang Y, Keeley S (2014) Ensemble of sea ice initial conditions for interannual climate predictions. Clim Dyn 43:2813–2829. doi: 10.1007/s00382-014-2095-7 CrossRefGoogle Scholar
  19. Hansen J, Ruedy R, Sato M, Lo K (2010) Global surface temperature change. Rev Geophys. doi: 10.1029/2010RG000345 Google Scholar
  20. Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107CrossRefGoogle Scholar
  21. Hazeleger W, Wang X, Severijns C, Stefanescu S, Bintanja R, Sterl A, Wyser K, Semmler T, Yang S, van den Hurk B (2012) EC-Earth V2.2: description and validation of a new seamless Earth system prediction model. Clim Dyn. doi: 10.1007/s00382-011-1228-5 Google Scholar
  22. Hazeleger W, Guemas V, Wouters B, Corti S, Andreu-Burillo I, Doblas-Reyes F, Wyser K, Caian M (2013) Multiyear climate predictions using two initialization strategies. Geophys Res Lett. doi: 10.1002/grl.50355 Google Scholar
  23. Hoke J, Anthes R (1976) The initialization of numerical models by a dynamic-initialization technique. Mon Weather Rev 104:1551–1556CrossRefGoogle Scholar
  24. Ide K, Courtier P, Ghil M, Lorenc AC (1997) Unified notation for data assimilation: operational, sequential and variational. J Meteorol Soc Jpn 75(1B):181–189Google Scholar
  25. Kalnay E (2002) Atmospheric modeling, data assimilation, and predictability. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. Keenlyside NS, Latif M, Jungclaus J, Kornblueth L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi: 10.1038/nature06921 CrossRefGoogle Scholar
  27. Kröger J, von Storch WMJS (2012) Impact of different ocean reanalyses on decadal climate prediction. Clim Dyn 39:795–810. doi: 10.1007/s00382-012-1310-7 CrossRefGoogle Scholar
  28. Lakshmivarahan S, Lewis J (2012) Data assimilation for atmospheric, oceanic and hydrological applications, vol 2. Springer, Berlin. doi: 10.1007/978-3-642-35088-7_2 Google Scholar
  29. Latif M, Collins M, Pohlmann H, Keenlyside N (2006) A review of predictability studies of atlantic sector climate on decadal time scales. J Clim 19:5971–5987CrossRefGoogle Scholar
  30. Lei L, Stauffer D, Haupt S, Young G (2012) A hybrid nudging-ensemble kalman filter approach to data assimilation. part II: application in a shallow-water model. Tellus A 64:18485Google Scholar
  31. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France 27:1288–1619Google Scholar
  32. Magnusson L, Alonso-Balmaseda M, Corti S, Molteni F, Stockdale T (2013) Evaluation of forecast strategies for seasonal and decadal forecasts in presence of systematic model errors. Clim Dyn 41:2393–2409. doi: 10.1007/s00382-012-1599-2 CrossRefGoogle Scholar
  33. Meehl G et al (2013) Decadal climate prediction: an update from the trenches. Bull Am Meteorol Soc 95(95):243–267. doi: 10.1175/BAMS-D-12-00241.1 Google Scholar
  34. Meehl GA, Goddard L, Murphy J, Stouffer RJ, Boer G, Danabasoglu G, Dixon K, Giorgetta MA, Greene AM, Hawkins E, Hegerl G, Karoly D, Keenlyside N, Kimoto M, Navarra BKA, Pulwarty R, Smith D, Stammer D, Stockdale T (2009) Decadal prediction. Bull Am Meteorol Soc 90(10):1467–1485CrossRefGoogle Scholar
  35. Mochizuki T, Ishii M, Kimoto M, Chikamoto Y, Watanabe M, Nozawa T, Sakamoto TT, Shiogama H, Awaji T, Sugiura N, Toyoda T, Yasunaka S, Tatebe H, Mori M (2010) Pacific decadal oscillation hindcasts relevant to near-term climate prediction. PNAS 107:1833–1837. doi: 10.1073/pnas.0906531107 CrossRefGoogle Scholar
  36. Mogensen K, Balmaseda M, Weaver A (2012) The NEMOVAR ocean data assimilation system as implemented in the ECMWF ocean analysis for system 4. Tech Mem ECMWF 668Google Scholar
  37. Murphy J, Kattsov V, Keenlyside N, Kimoto M, Meehl G, Mehtaf V, Pohlmann H, Scaife A, Smith D (2010) Towards prediction of decadal climate variability and change. Proc Environ Sci 1:287–304CrossRefGoogle Scholar
  38. van Oldenborgh G, Doblas-Reyes F, Wouters B, Hazeleger W (2012) Skill in the trend and internal variability in a multi-model decadal prediction ensemble. Clim Dyn 38:1263–1280CrossRefGoogle Scholar
  39. Pohlmann H, Jungclaus JH, Kohl A, Stammer D, Marotzke J (2009) Initializing decadal climate predictions with the GECCO oceanic synthesis: effects on the North Atlantic. J Clim 22:3926–3938CrossRefGoogle Scholar
  40. Polkova I, Köhl A, Stammer D (2014) Impact of initialization procedures on the predictive skill of a coupled ocean atmosphere model. Clim Dyn 42:3151–3169. doi: 10.1007/s00382-013-1969-4 CrossRefGoogle Scholar
  41. Rayner N, Brohan P, Parker D, Folland C, Kennedy J, Vanicek M, Ansell T, Tett S (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HADSST2 data set. J Clim 19(13):446–469CrossRefGoogle Scholar
  42. Sanchez-Gomez E, Cassou C, Ruprich-Robert Y, Fernandez E, Terray L (2015) Drift dynamics in a coupled model initialized for decadal forecasts. Clim Dyn. doi: 10.1007/s00382-015-2678-y Google Scholar
  43. Smith D, Murphy J (2007) An objective ocean temperature and salinity analysis using covariances from a global model. J Geophys Res 112(C02):022. doi: 10.1029/2005JC003172 Google Scholar
  44. Smith D, Cusack A, Colman A, Folland C, Harris G, Murphy J (2007) Improved surface temperature prediction for the coming decade from a global climate model. Science 317:796–799. doi: 10.1126/science.1139540 CrossRefGoogle Scholar
  45. Smith D, Eade R, Pohlmann H (2013) A comparison of full-field and anomaly initialization for seasonal to decadal climate prediction. Clim Dyn 41:3325–3338. doi: 10.1007/s00382-0131683-2 CrossRefGoogle Scholar
  46. Smith TM, Reynolds RW, Lawrimore TCPH (2008) Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296CrossRefGoogle Scholar
  47. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc. doi: 10.1175/BAMS-D-11-00094.1 Google Scholar
  48. Thompson M, Doblas-Reyes F, Mason S, Hagedorn R, Connor S, Phindela T, Morse A, Palmer T (2006) Malaria early warnings based on seasonal climate forecasts from multi-model ensembles. Nature 439:576–579. doi: 10.1038/nature04503 CrossRefGoogle Scholar
  49. Uppala S, Kallberg P, Simmons A, Andrae U, Bechtold V, Fiorino M, Gibson J, Haseler J, Hernandez A, Kelly G, Li X, Onogi K, Saarinen S, Allan NSR, Andersson E, Arpe K, Balmaseda M, Beljaars A, Berg L, Bormann JBN, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hoskins EHB, Isaksen L, Janssen P, Jenne R, Mcnally A, Mahfouf JF, Morcrette JJ, Rayner N, Saunders R, Simon P, Sterl A, Trenberth K, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 reanalysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  50. Valcke S (2013) The OASIS3 coupler: a European climate modelling community software. Geosci Model Dev 6:373–388. doi: 10.5194/gmd-6-373-2013 CrossRefGoogle Scholar
  51. Weber R, Carrassi A, Doblas-Reyes F (2015) Linking the anomaly initialization approach to the mapping paradigm: a proof-of-concept study. Mon Weather Rev 143:4695–4713CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Carrassi
    • 1
    • 2
    Email author
  • V. Guemas
    • 2
    • 3
  • F. J. Doblas-Reyes
    • 2
    • 4
  • D. Volpi
    • 2
    • 5
  • M. Asif
    • 2
  1. 1.Nansen Environmental and Remote Sensing Center (NERSC)BergenNorway
  2. 2.Institut Català de Ciències del Clima (IC3)BarcelonaSpain
  3. 3.Centre National de Recherches Météorologiques/Groupe d’Etude de l’Atmosphére Météorologique, UMR3589ToulouseFrance
  4. 4.Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
  5. 5.University of ReadingReadingUnited Kingdom

Personalised recommendations