Climate Dynamics

, Volume 47, Issue 9–10, pp 3335–3357 | Cite as

Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon

  • L. Resplandy
  • R. F. Keeling
  • B. B. Stephens
  • J. D. Bent
  • A. Jacobson
  • C. Rödenbeck
  • S. Khatiwala
Article

Abstract

Despite its importance to the climate system, the ocean meridional heat transport is still poorly quantified. We identify a strong link between the northern hemisphere deficit in atmospheric potential oxygen (APO = O\(_2\) + 1.1 \(\times\) CO\(_2\)) and the asymmetry in meridional heat transport between northern and southern hemispheres. The recent aircraft observations from the HIPPO campaign reveal a northern APO deficit in the tropospheric column of \(-\)10.4 \(\pm\) 1.0 per meg, double the value at the surface and more representative of large-scale air–sea fluxes. The global northward ocean heat transport asymmetry necessary to explain the observed APO deficit is about 0.7–1.1 PW, which corresponds to the upper range of estimates from hydrographic sections and atmospheric reanalyses.

Keywords

Ocean heat transport Potential oxygen Hemispheric asymmetry HIPPO aircraft campaign 

Supplementary material

382_2016_3029_MOESM1_ESM.pdf (350 kb)
Supplementary material 1 (pdf 350 KB)

References

  1. Anderson LA, Sarmiento JL (1994) Redfield ratios of remineralization determined by nutrient data analysis. Glob Biogeochem Cycl 8(1):65–80. doi:10.1029/93GB03318 CrossRefGoogle Scholar
  2. Andres R, Boden T, Higdon D (2014) A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B 66(0). http://www.tellusb.net/index.php/tellusb/article/view/23616
  3. Atkinson CP, Bryden HL, Cunningham SA, King BA (2012) Atlantic transport variability at 25\(^\circ\)n in six hydrographic sections. Ocean Sci 8(4):497–523. doi:10.5194/os-8-497-2012 CrossRefGoogle Scholar
  4. Battle M, Fletcher SM, Bender ML, Keeling RF, Manning AC, Gruber N, Tans PP, Hendricks MB, Ho DT, Simonds C, Mika R, Paplawsky B (2006) Atmospheric potential oxygen: new observations and their implications for some atmospheric and oceanic models. Glob Biogeochem Cycl. doi:10.1029/2005GB002534 Google Scholar
  5. Bent J (2014) Airborne oxygen measurements over the southern ocean as an integrated constraint of seasonal biogeochemical processes. Ph.D. thesis, University of California San Diego, bluemoon.ucsd.edu/publications/jonathan/Bent\(\_\)Dissertation\(\_\_\)FINALGoogle Scholar
  6. Blaine TW (2005) Continuous measurements of atmospheric Ar/N\(_2\) as a tracer of air–sea heat flux: models, methods, and data. Ph.D. Thesis, University of California, San Diego, La Jolla, 225 ppGoogle Scholar
  7. Bryden HL, Imawaki S (2001) Ocean heat transport. In: Siedler G, Gould J (eds) Ocean circulation and climate. Academic Press, San Diego, pp 455–474Google Scholar
  8. Bryden HL, King BA, McCarthy GD, McDonagh EL (2014) Impact of a 30 % reduction in Atlantic meridional overturning during 2009–2010. Ocean Sci 10(4):683–691. doi:10.5194/os-10-683-2014 CrossRefGoogle Scholar
  9. Capet X, Colas F, Penven P, Marchesiello P, McWilliams JC (2008) Eastern boundary subtropical upwelling systems. In: Hecht MW, Hasumi H (eds) Eddy Resolving ocean modeling, vol 117, Geophysical Monograph Series, Washington D. C., pp 131–147Google Scholar
  10. Crowley TJ (1992) North Atlantic deep water cools the southern hemisphere. Paleoceanography 7(4):489–497. doi:10.1029/92PA01058 CrossRefGoogle Scholar
  11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kallberg P, Khler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thpaut JN, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Met Soc 137(656):553–597. doi:10.1002/qj.828 CrossRefGoogle Scholar
  12. Esbensen SK, Kushnir Y (1981) The heat budget of the global ocean: an atlas based on estimates from surface marine observations. In: Climate Res. Inst. Rep., vol 29, Oregon State Univ., USA, 27ppGoogle Scholar
  13. Fasullo JT, Trenberth KE (2008) The annual cycle of the energy budget. Part I: global mean and landocean exchanges. J Clim 21:2297–2312. doi:10.1175/2007JCLI1935.1 CrossRefGoogle Scholar
  14. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  15. Fuckar NS, Xie SP, Farneti R, Maroon EA, Frierson DMW (2013) Influence of the extratropical ocean circulation on the intertropical convergence zone in an idealized coupled general circulation model. J Clim 26:4612–4629. doi:10.1175/JCLI-D-12-00294.1 CrossRefGoogle Scholar
  16. Ganachaud A, Wunsch C (2003) Large-scale ocean heat and freshwater transports during the world ocean circulation experiment. J Clim 16:31155–31166. doi:10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2 CrossRefGoogle Scholar
  17. Garcia HE, Keeling RF (2001) On the global oxygen anomaly and air–sea flux. J Geophys Res 106(C12):31,155–31,166. doi:10.1029/1999JC000200 CrossRefGoogle Scholar
  18. Gerber M, Joos F (2010) Carbon sources and sinks from an ensemble kalman filter ocean data assimilation. Glob Biogeochem Cycl. doi:10.1029/2009GB003531d Google Scholar
  19. Gloor M, Gruber N, Hughes TMC, Sarmiento JL (2001) Estimating net air–sea fluxes from ocean bulk data: methodology and application to the heat cycle. Glob Biogeochem Cycl 15(4):767–782. doi:10.1029/2000GB001301 CrossRefGoogle Scholar
  20. Gloor M, Gruber N, Sarmiento J, Sabine CL, Feely RA, Rödenbeck C (2003) A first estimate of present and preindustrial air–sea CO\(_2\) flux patterns based on ocean interior carbon measurements and models. Geophys Res Lett 30(1):10-1–10-4. doi:10.1029/2002GL015594 CrossRefGoogle Scholar
  21. Gnanadesikan A (1999) A simple predictive model for the structure of the oceanic pycnocline. Science 283(5410):2077–2079. doi:10.1126/science.283.5410.2077 CrossRefGoogle Scholar
  22. Gnanadesikan A, Slater RD, Gruber N, Sarmiento JL (2002) Oceanic vertical exchange and new production: a comparison between models and observations. Deep Sea Res Part II Topical Stud Oceanogr 49(13):363–401. doi:10.1016/S0967-0645(01)00107-2 Google Scholar
  23. Graven HD, Gruber N, Key R, Khatiwala S, Giraud X (2012) Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO\(_{2}\) uptake. J Geophys Res. doi:10.1029/2012JC008074 Google Scholar
  24. Gruber N, Sarmiento JL (2002) Biogeochemical/physical interactions in elemental cycles. In: Robinson AR, McCarthy JJ, Rothschild BJ (eds) The Sea: biological-physical interactions in the oceans, vol 12. Wiley, New York, pp 337–399Google Scholar
  25. Gruber N, Gloor M, Fan SM, Sarmiento JL (2001) Air–sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen cycles. Glob Biogeochem Cycl 15(4):783–803. doi:10.1029/2000GB001302 CrossRefGoogle Scholar
  26. Gruber N, Gloor M, Fletcher SEM, Doney SC, Dutkiewicz S, Follows MJ, Gerber M, Jacobson AR, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL, Takahashi T (2009) Oceanic sources, sinks, and transport of atmospheric CO\(_2\). Glob Biogeochem Cycl. doi:10.1029/2008GB003349 Google Scholar
  27. Hall MM, Bryden HL (1982) Direct estimates and mechanisms of ocean heat transport. Deep Sea Res 29A(3):339–359. doi:10.1016/0198-0149(82)90099-1 CrossRefGoogle Scholar
  28. Ham YG, Kug JS (2012) How well do current climate models simulate two types of El Nino? Clim Dyn 39(1–2):383–398. doi:10.1007/s00382-011-1157-3 CrossRefGoogle Scholar
  29. Hamme RC, Emerson SR (2004) The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Res Part I Oceanogr Res Pap 51(11):1517–1528. doi:10.1016/j.dsr.2004.06.009, http://www.sciencedirect.com/science/article/pii/S0967063704001190
  30. Heimann M, Körner S (2003) The global atmospheric tracer model TM3. In: Biogeochemie MPIF (ed) Technical Report, vol 5. Max-Planck-Institut für Biogeochemie, Jena, p 131Google Scholar
  31. Jacobson AR, Mikaloff Fletcher SE, Gruber N, Sarmiento JL, Gloor M (2007) A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2 regional resuts. Glob Biogeochem Cycl. doi:10.1029/2006GB002703 Google Scholar
  32. Johns WE, Beal LM, Baringer MO, Molina JR, Cunningham SA, Kanzow T, Rayner D (2008) Variability of shallow and deep western boundary currents off the Bahamas during 2004-05: results from the 26N RAPIDMOC array. J Phys Oceanogr 38(3):605–623. doi:10.1175/2007JPO3791.1 CrossRefGoogle Scholar
  33. Johns WE, Baringer MO, Beal LM, Cunningham SA, Kanzow T, Bryden HL, Hirschi JJM, Marotzke J, Meinen CS, Shaw B, Curry R (2011) Continuous, array-based estimates of atlantic ocean heat transport at 26.5\(^\circ\)n. J Clim 24:2429–2449. doi:10.1175/2010JCLI3997.1 CrossRefGoogle Scholar
  34. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The ncep/ncar 40-year reanalysis project. Bull Am Met Soc 77:437–47110.1175/1520-0477 CrossRefGoogle Scholar
  35. Keeling R, Manning A (2014) 5.15 - studies of recent changes in atmospheric O\(_2\) content. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry (Second Edition), second edition edn, Elsevier, Oxford, pp 385–404. doi:10.1016/B978-0-08-095975-7.00420-4, http://www.sciencedirect.com/science/article/pii/B9780080959757004204
  36. Keeling RF (1988) Measuring correlations between atmospheric oxygen and carbon dioxide mole fractions: a preliminary study in urban air. J Atmos Chem 7:153–176CrossRefGoogle Scholar
  37. Keeling RF, Garcia HE (2002) The change in oceanic O\(_2\) inventory associated with recent global warming. In: Proceedings of the National Academy of Sciences 99(12):7848–7853. doi:10.1073/pnas.122154899, http://www.pnas.org/content/99/12/7848.abstract, http://www.pnas.org/content/99/12/7848.full+html
  38. Keeling RF, Shertz SR (1992) Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358(6389):723–727. doi:10.1038/358723a0, http://www.nature.com/nature/journal/v358/n6389/abs/358723a0.html
  39. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2(1):199–229. doi:10.1146/annurev.marine.010908.163855 CrossRefGoogle Scholar
  40. Key RM, Kozyr A, Sabine CL, Lee K, Wanninkhof R, Bullister JL, Feely RA, Millero FJ, Mordy C, Peng TH (2004) A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob Biogeochem Cycl. doi:10.1029/2004GB002247 Google Scholar
  41. Khatiwala S (2007) A computational framework for simulation of biogeochemical tracers in the ocean. Glob Biogeochem Cycl. doi:10.1029/2007GB002923 Google Scholar
  42. Khatiwala S, Visbeck M, Cane MA (2005) Accelerated simulation of passive tracers in ocean circulation models. Ocean Model 9(1):51–69. doi:10.1016/j.ocemod.2004.04.002, http://www.sciencedirect.com/science/article/pii/S1463500304000307
  43. Khatiwala S, Primeau F, Hall T (2009) Reconstruction of the history of anthropogenic CO\(_2\) concentrations in the ocean. Nature 462:346–349. doi:10.1038/nature08526 CrossRefGoogle Scholar
  44. Khatiwala S, Tanhua T, Mikaloff Fletcher S, Gerber M, Doney SC, Graven HD, Gruber N, McKinley GA, Murata A, Ríos AF, Sabine CL (2013) Global ocean storage of anthropogenic carbon. Biogeosciences 10(4):2169–2191. doi:10.5194/bg-10-2169-2013 CrossRefGoogle Scholar
  45. Large WG, Yeager SG (2009) The global climatology of an interannually varying air–sea flux data set. Clim Dyn 33(2–3):341–364. doi:10.1007/s00382-008-0441-3 CrossRefGoogle Scholar
  46. Lévy M, Klein P, Tréguier AM, Iovino D, Madec G, Masson S, Takahashi K (2010) Modifications of gyre circulation by sub-mesoscale physics. Ocean Model 34:1–15. doi:10.1016/j.ocemod.2010.04.001 CrossRefGoogle Scholar
  47. Li G, Xie SP (2014) Tropical biases in cmip5 multimodel ensemble: the excessive equatorial pacific cold tongue and double itcz problems. J Clim 27:1765–1780. doi:10.1175/JCLI-D-13-00337.1 CrossRefGoogle Scholar
  48. Lumpkin R, Speer K (2007) Global ocean meridional overturning. J Phys Oceanogr 37:2550–2562. doi:10.1175/JPO3130.1 CrossRefGoogle Scholar
  49. Macdonald AM (1998) The global ocean circulation: a hydrographic estimate and regional analysis. Prog Oceanogr 41(3):281–382. doi:10.1016/S0079-6611(98)00020-2 CrossRefGoogle Scholar
  50. Mahlstein I, Knutti R (2011) Ocean heat transport as a cause for model uncertainty in projected arctic warming. J Clim 24:1451–1460. doi:10.1175/2010JCLI3713.1 CrossRefGoogle Scholar
  51. Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible navier stokes model for studies of the ocean on parallel computers. J Geophys Res Oceans 102(C3):5753–5766. doi:10.1029/96JC02775 CrossRefGoogle Scholar
  52. Marshall J, Donohoe A, Ferreira D, McGee D (2014) The oceans role in setting the mean position of the inter-tropical convergence zone. Clim Dyn 42(7–8):1967–1979. doi:10.1007/s00382-013-1767-z CrossRefGoogle Scholar
  53. Mazloff MR, Ferrari R, Schneider T (2013) The force balance of the southern ocean meridional overturning circulation. J Phys Oceanogr 43:1193–1208. doi:10.1038/ngeo1193 CrossRefGoogle Scholar
  54. Mikaloff Fletcher SE, Gruber N, Jacobson AR, Doney SC, Dutkiewicz S, Gerber M, Follows M, Joos F, Lindsay K, Menemenlis D, Mouchet A, Mueller SA, Sarmiento JL (2006) Inverse estimates of anthropogenic CO\(_2\) uptake, transport, and storage by the ocean. Glob Biogeochem Cycl 20(2). doi:10.1029/2005GB002530, http://dx.doi.org/10.1029/2005GB002530
  55. Mikaloff Fletcher SE, Gruber N, Jacobson AR, Gloor M, Doney SC, Dutkiewicz S, Gerber M, Follows M, Joos F, Lindsay K, Menemenlis D, Mouchet A, Müller SA, Sarmiento JL (2007) Inverse estimates of the oceanic sources and sinks of natural CO\(_2\) and the implied oceanic carbon transport. Glob Biogeochem Cycl 21(1). doi:10.1029/2006GB002751, http://dx.doi.org/10.1029/2006GB002751
  56. Millero FJ, Perron G, Desnoyers JE (1973) Heat capacity of seawater solutions from 5\(^\circ\) to 35\(^\circ\)c and 0.5 to 22 permil chlorinity. J Geophys Res 78(21):4499–4507. doi:10.1029/JC078i021p04499 CrossRefGoogle Scholar
  57. Miyazaki K, Patra PK, Takigawa M, Iwasaki T, Nakazawa T (2008) Global-scale transport of carbon dioxide in the troposphere. J Geophys Res Atmos 113(D15):D15,301. doi:10.1029/2007JD009557 CrossRefGoogle Scholar
  58. Nevison CD, Mahowald NM, Doney SC, Lima ID, Cassar N (2008) Impact of variable air–sea o\(_{2}\) and co\(_{2}\) fluxes on atmospheric potential oxygen (apo) and land-ocean carbon sink partitioning. Biogeosciences 5(3):875–889. doi:10.5194/bg-5-875-2008 CrossRefGoogle Scholar
  59. Palter JB, Sarmiento JL, Gnanadesikan A, Simeon J, Slater RD (2010) Fueling export production: nutrient return pathways from the deep ocean and their dependence on the meridional overturning circulation. Biogeosciences 7(11):3549–3568. doi:10.5194/bg-7-3549-2010 CrossRefGoogle Scholar
  60. Patra P, Houweling KS, Krol M, Bousquet P, Belikov D, Bergmann D, Bian H, Cameron-Smith P, Chipperfield MP, Corbin K (2011) Transcom model simulations of ch\(_4\) and related species: linking transport, surface flux and chemical loss with ch\(_4\) variability in the troposphere and lower stratosphere. Atmos Chem Phys 11(24):12,813–12,837CrossRefGoogle Scholar
  61. Philander SGH, Gu D, Lambert G, Li T, Halpern D, Lau NC, Pacanowski RC (1996) Why the ITCZ is mostly north of the equator. J Clim 9(5):2958–2972. doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2 CrossRefGoogle Scholar
  62. Resplandy L, Lévy M, Madec G, Pous S, Aumont O, Kumar D (2011) Contribution of mesoscale processes to nutrient budgets in the Arabian Sea. J Geophys Res. doi:10.1029/2011JC007006 Google Scholar
  63. Rhein M, Rintoul SR, Aoki S, Campos E, Chambers D, Feely RA, Gulev S, Johnson GC, Josey SA, Kostianoy A, Mauritzen C, Roemmich D, Talley LD, Wang F (2013) Observations: Ocean. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  64. Rödenbeck C, Keeling RF, Bakker DCE, Metzl N, Olsen A, Sabine C, Heimann M (2013) Global surface-ocean pCO\(_{2}\) and sea-air CO\(_{2}\) flux variability from an observation-driven ocean mixed-layer scheme. Ocean Sci 9(2):193–216. doi:10.5194/os-9-193-2013 CrossRefGoogle Scholar
  65. Schneider T, Bischoff T, Haug GH (2014) Migrations and dynamics of the intertropical convergence zone. Nature 513:45–53. doi:10.1038/nature13636 CrossRefGoogle Scholar
  66. Severinghaus JP (1995) Studies of the terrestrial o\(_2\) and carbon cycles in sand dune gases and in biosphere 2. In: Ph.D. thesis, Columbia Univ., New YorkGoogle Scholar
  67. Stephens BB, Keeling RF, Heimann M, Six KD, Murnane R, Caldeira K (1998) Testing global ocean carbon cycle models using measurements of atmospheric O\(_2\) and CO\(_2\) concentration. Glob Biogeochem Cycl 12(2):213–230. doi:10.1029/97GB03500 CrossRefGoogle Scholar
  68. Takahashi T, Sutherland SC, Sweeney C, Poisson A, Metzl N, Tilbrook B, Bates N, Wanninkhof R, Feely RA, Sabine C, Olafsson J, Nojiri Y (2002) Global sea-air CO\(_2\) flux based on climatological surface ocean pCO\(_2\), and seasonal biological and temperature effects. Deep Sea Res Part II Top Stud Oceanogr 49(9–10):1601–1622. doi:10.1016/S0967-0645(02)00003-6. http://www.sciencedirect.com/science/article/B6VGC-452W7KK-2/2/cf337375806e31b8c4579d8e5d9a98c7, the Southern Ocean I: Climatic Changes in the Cycle of Carbon in the Southern Ocean
  69. Takahashi T, Sutherland SC, Wanninkhof R, Sweeney C, Feely RA, Chipman DW, Hales B, Friederich G, Chavez F, Sabine C, Watson A, Bakker DC, Schuster U, Metzl N, Yoshikawa-Inoue H, Ishii M, Midorikawa T, Nojiri Y, Körtzinger A, Steinhoff T, Hoppema M, Olafsson J, Arnarson TS, Tilbrook B, Johannessen T, Olsen A, Bellerby R, Wong C, Delille B, Bates N, de Baar HJ (2009) Climatological mean and decadal change in surface ocean pCO\(_2\), and net sea-air CO\(_2\) flux over the global oceans. Deep Sea Res Part II Top Stud Oceanogr 56(8–10):554–577. doi:10.1016/j.dsr2.2008.12.009, http://www.sciencedirect.com/science/article/B6VGC-4V59VVH-1/2/6c157bd4052048ac211736c038787a3a, surface Ocean CO2 Variability and Vulnerabilities
  70. Talley LD (2003) Shallow, intermediate, and deep overturning components of the global heat budget. J Phys Oceanogr 33(3):530–560. doi:10.1175/1520-0442(1996)009<2958:WTIIMN>2.0.CO;2 CrossRefGoogle Scholar
  71. Talley LD (2008) Freshwater transport estimates and the global overturning circulation: Shallow, deep and throughflow components. Prog Oceanogr 78(4):257–303. doi:10.1016/j.pocean.2008.05.001, http://www.sciencedirect.com/science/article/pii/S0079661108001080
  72. Thomas L, Ferrari R (2008) Friction, frontogenesis, frontal instabilities and the stratification of the ocean surface mixed layer. J Phys Oceanogr 38:2501–2518CrossRefGoogle Scholar
  73. Thomas MD, Zhai X (2013) Eddy-induced variability of the meridional overturning circulation in a model of the north atlantic. Geophys Res Lett 40(11):2742–2747. doi:10.1002/grl.50532 CrossRefGoogle Scholar
  74. Tohjima Y, Mukai H, Machida T, Nojiri Y, Gloor M (2005) First measurements of the latitudinal atmospheric O\(_2\) and CO\(_2\) distributions across the western Pacific. Geophys Res Lett. doi:10.1029/2005GL023311 Google Scholar
  75. Tohjima Y, Minejima C, Mukai H, Machida T, Yamagishi H, Nojiri Y (2012) Analysis of seasonality and annual mean distribution of atmospheric potential oxygen (APO) in the Pacific region. Glob Biogeochem Cycl. doi:10.1029/2011GB004110 Google Scholar
  76. Trenberth KE, Caron JM (2001) Estimates of meridional atmosphere and ocean heat transports. J Clim 14:3433–3443. doi:10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2 CrossRefGoogle Scholar
  77. Trenberth KE, Fasullo JT (2008) An observational estimate of inferred ocean energy divergence. J Phys Oceanogr 38:984–999. doi:10.1175/2007JPO3833.1 CrossRefGoogle Scholar
  78. Wofsy SC, Daube BC, Jimenez R, Kort E, Pittman JV, Park S, Commane R, Xiang B, Santoni G, Jacob D, Fisher J, Pickett-Heaps C, Wang H, Wecht K, Wang QQ, Stephens BB, Shertz S, Watt A, Romashkin P, Camposv T, Haggerty J, Cooper WA, DRogers, Beaton S, Hendershot R, Elkins JW, Fahey DW, Gao RS, Moore F, Montzka SA, Schwarz JP, Perring AE, Hurst D, Miller BR, Sweeney C, Oltmans S, Nance D, Hintsa E, Dutton G, Watts LA, Spackman JR, Rosenlof KH, Ray EA, Hall B, Zondlo MA, Diao M, Keeling R, Bent J, Atlas EL, Lueb R, Mahoney MJ (2012) Hippo merged 10-second meteorology, atmospheric chemistry, aerosol data (r\(\_\)20121129). doi:10.3334/CDIAC/hippo_010, carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
  79. Wofsy SC et al (2011) HIAPER pole-to-pole observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos Trans R Soc A Math Phys Eng Sci 369(1943):2073–2086. doi:10.1098/rsta.2010.0313 CrossRefGoogle Scholar
  80. Wunsch C, Heimbach P, Ponte RM, Fukumori I, the ECCO-GODAE Consortium Members (2009) The global general circulation of the ocean estimated by the ecco-consortium. Oceanography. doi:10.5670/oceanog.2009.41 Google Scholar
  81. Zhang Z, Wang W, Qiu B (2014) Oceanic mass transport by mesoscale eddies. Science 345(6194):322–324. doi:10.1126/science.1252418 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  2. 2.National Center for Atmospheric ResearchBoulderUSA
  3. 3.Earth System Research Laboratory, NOAABoulderUSA
  4. 4.Max Planck Institute for BiogeochemistryJenaGermany
  5. 5.Department of Earth SciencesUniversity of OxfordOxfordUK

Personalised recommendations