Climate Dynamics

, Volume 47, Issue 9–10, pp 3091–3111 | Cite as

Abrupt transitions in the NAO control of explosive North Atlantic cyclone development

  • Iñigo Gómara
  • Belén Rodríguez-Fonseca
  • Pablo Zurita-Gotor
  • Sven Ulbrich
  • Joaquim G. Pinto


Explosive cyclones are intense extra-tropical low pressure systems featuring large deepening rates. In the Euro-Atlantic sector, they are a major source of life-threatening weather impacts due to their associated strong wind gusts, heavy precipitation and storm surges. The wintertime variability of the North Atlantic cyclonic activity is primarily modulated by the North Atlantic Oscillation (NAO). In this study, we investigate the interannual and multi-decadal variability of explosive North Atlantic cyclones using track density data from two reanalysis datasets (NCEP and ERA-40) and a control simulation of an atmosphere/ocean coupled General Circulation Model (GCM—ECHAM5/MPIOM1). The leading interannual and multi-decadal modes of variability of explosive cyclone track density are characterized by a strengthening/weakening pattern between Newfoundland and Iceland, which is mainly modulated by the NAO at both timescales. However, the NAO control of interannual cyclone variability is not stationary in time and abruptly fluctuates during periods of 20–25 years long both in NCEP and ECHAM5/MPIOM1. These transitions are accompanied by structural changes in the leading mode of explosive cyclone variability, and by decreased/enhanced baroclinicity over the sub-polar/sub-tropical North Atlantic. The influence of the ocean is apparently important for both the occurrence and persistence of such anomalous periods. In the GCM, the Atlantic Meridional Overturning Circulation appears to influence the large-scale baroclinicity and explosive cyclone development over the North Atlantic. These results permit a better understanding of explosive cyclogenesis variability at different climatic timescales and might help to improve predictions of these hazardous events.


Extra-tropical cyclones Explosive cyclogenesis NAO Jet stream Ocean variability AMOC 



We thank the National Centers for Environmental Prediction and the European Centre for Medium-Range Weather Forecasts for the NCEP and ERA-40 reanalysis. We thank the Met Office Hadley Centre for the SST and sea ice data (HadISST) and the University of Maryland for the Simple Ocean Data Assimilation (SODA) reanalysis. We are indebted to the Max Plank Institute and the Deutsches Klimarechenzentrum (DKRZ) for the ECHAM5/MPIOM1 data. In particular, we thank Hans Winter, Hannes Thiemann, Helmuth Haak and Monika Esch for help with the MPIOM1 data. IG is supported by the research projects MULCLIVAR (CGL-2012-38923-C02-01—Spanish Ministry of Economy and Competitiveness) and PREFACE (EUFP7/2007–2013 Grant Agreement 603521). We thank Irene Polo, Marta Martín-Rey, Jorge López-Parages, Rubén Banderas, Tim Woollings and Christoph Raible for constructive remarks. We thank Gwendal Rivière and another anonymous reviewer for their pertinent comments and suggestions, which have contributed to improve this manuscript.

Supplementary material

382_2016_3015_MOESM1_ESM.docx (743 kb)
Supplementary material 1 (DOCX 743 kb)


  1. Bader J, Mesquita MDS, Hodges KI, Miles M, Osterhus S, Keenlyside N (2011) A review on Northern Hemisphere sea-ice, storminess and the North Atlantic Oscillation: observations and projected changes. Atmos Res 101:809–834. doi: 10.1016/j.atmosres.2011.04.007 CrossRefGoogle Scholar
  2. Baldwin MP, Dunkerton TJ (2001) Stratospheric harbingers of anomalous weather regimes. Science 294(5542):581–584. doi: 10.1126/science.1063315 CrossRefGoogle Scholar
  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126. doi: 10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2 CrossRefGoogle Scholar
  4. Benedict JJ, Lee S, Feldstein SB (2004) Synoptic view of the North Atlantic Oscillation. J Atmos Sci 61:121–144CrossRefGoogle Scholar
  5. Bengtsson L, Hodges KI, Roeckner E, Brokopf R (2006) On the natural variability of the pre-industrial European climate. Clim Dyn 27:743–760CrossRefGoogle Scholar
  6. Bjerknes J, Solberg H (1922) On the life cycle of cyclones and the polar front theory of atmospheric circulation (edited by Henry AJ). Mon Weather Rev 50:468–473. doi: 10.1175/1520-0493(1922)50<468:JBAHSO>2.0.CO;2 CrossRefGoogle Scholar
  7. Blackmon ML, Wallace JM, Lau NC, Mullen SL (1977) An observational study of the Northern Hemisphere wintertime circulation. J Atmos Sci 34:1040–1053. doi: 10.1175/1520-0469(1977)034<1040:AOSOTN>2.0.CO;2 CrossRefGoogle Scholar
  8. Bosart LF, Lin SC (1984) A diagnostic analysis of the Presidents’ Day storm of February 1979. Mon Weather Rev 112:2148–2177CrossRefGoogle Scholar
  9. Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Blade I (1999) Effective number of degrees of freedom of a spatial field. J Clim 12:1990–2009CrossRefGoogle Scholar
  10. Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  11. Chang EKM, Orlanski I (1993) On the dynamics of a storm track. J Atmos Sci 50:999–1015. doi: 10.1175/1520-0469(1993)050<0999:OTDOAS>2.0.CO;2 CrossRefGoogle Scholar
  12. Chen S, Wu R, Chen W (2015) The changing relationship between interannual variations of the North Atlantic Oscillation and Northern Tropical Atlantic SST. J Clim 28:485–504. doi: 10.1175/JCLI-D-14-00422.1 CrossRefGoogle Scholar
  13. Czaja A, Frankignoul C (1999) Influence of the North Atlantic SST on the atmospheric circulation. Geophys Res Lett 26(19):2969–2972. doi: 10.1029/1999GL900613 CrossRefGoogle Scholar
  14. Davis CA, Emanuel KA (1988) Observational evidence for the influence of surface heat fluxes on maritime cyclogenesis. Mon Weather Rev 116:2649–2659CrossRefGoogle Scholar
  15. Delworth TL, Greatbatch RJ (2000) Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J Clim 13:1481–1495CrossRefGoogle Scholar
  16. Delworth T, Zeng F (2015) The impact of the North Atlantic Oscillation on climate through its influence on the Atlantic Meridional Overturning Circulation. J Clim. doi: 10.1175/JCLI-D-15-0396.1 Google Scholar
  17. Dong B, Sutton RT, Woollings T, Hodges K (2013) Variability of the North Atlantic summer storm track: mechanisms and impacts on European climate. Environ Res Lett 8:034037. doi: 10.1088/1748-9326/8/3/034037 CrossRefGoogle Scholar
  18. Drouard M, Rivière G, Arbogast P (2015) The link between the North Pacific climate variability and the North Atlantic Oscillation via downstream propagation of synoptic waves. J Clim 28:3957–3976. doi: 10.1175/JCLI-D-14-00552.1 CrossRefGoogle Scholar
  19. Eden C, Jung T (2001) North Atlantic interdecadal variability: oceanic response to the North Atlantic Oscillation (1865–1997). J Clim 14:676–691CrossRefGoogle Scholar
  20. Feldstein SB (2003) The dynamics of NAO teleconnection pattern growth and decay. Q J R Meteorol Soc 129:901–924CrossRefGoogle Scholar
  21. Feser F, Barcikowska M, Krueger O, Schenk F, Weisse R, Xia L (2015) Storminess over the North Atlantic and northwestern Europe—a review. Q J R Meteorol Soc 141:350–382. doi: 10.1002/qj.2364 CrossRefGoogle Scholar
  22. Fink AH, Pohle S, Pinto JG, Knippertz P (2012) Diagnosing the influence of diabatic processes on the explosive deepening of extratropical cyclones. Geophys Res Lett 39:L07803. doi: 10.1029/2012GL051025 CrossRefGoogle Scholar
  23. Fosdick EK, Smith PJ (1991) Latent heat release in an extratropical cyclone that developed explosively over the southeastern United States. Mon Weather Rev 119:193–207CrossRefGoogle Scholar
  24. Gilet JB, Plu M, Rivière G (2009) Nonlinear baroclinic dynamics of surface cyclones crossing a zonal jet. J Atmos Sci 66:3021–3041CrossRefGoogle Scholar
  25. Gómara I, Pinto JG, Woollings T, Masato G, Zurita-Gotor P, Rodríguez-Fonseca B (2014a) Rossby wave-breaking analysis of explosive cyclones in the Euro-Atlantic sector. Q J R Meteorol Soc 140:738–753. doi: 10.1002/qj.2190 CrossRefGoogle Scholar
  26. Gómara I, Rodríguez-Fonseca B, Zurita-Gotor P, Pinto JG (2014b) On the relation between explosive cyclones affecting Europe and the North Atlantic Oscillation. Geophys Res Lett 41:2182–2190. doi: 10.1002/2014GL059647 CrossRefGoogle Scholar
  27. Gyakum JR, Danielson RE (2000) Analysis of meteorological precursors to ordinary and explosive cyclogenesis in the western North Pacific. Mon Weather Rev 128:851–863CrossRefGoogle Scholar
  28. Hanley J, Caballero R (2012) The role of large-scale atmospheric flow and Rossby wave breaking in the evolution of extreme windstorms over Europe. Geophys Res Lett 39:L21708. doi: 10.1029/2012GL053408 Google Scholar
  29. Hoerling MP, Hurrell JW, Xu T (2001) Tropical origin for recent North Atlantic climate change. Science 292:90–92CrossRefGoogle Scholar
  30. Hoerling MP, Hurrell JW, Xu T, Bates GT, Phillips A (2004) Twentieth century North Atlantic climate change. Part II: understanding the effect of Indian Ocean warming. Clim Dyn 23:391–405. doi: 10.1007/s00382-004-0433-x CrossRefGoogle Scholar
  31. Honda M, Nakamura H, Ukita J, Kousaka I, Takeuchi K (2001) Interannual seesaw between the Aleutian and Icelandic lows. Part I: seasonal dependence and life cycle. J Clim 14:1029–1042. doi: 10.1175/1520-0442(2001)014<1029:ISBTAA>2.0.CO;2 CrossRefGoogle Scholar
  32. Hoskins BJ, Hodges KI (2002) New perspectives on the Northern Hemisphere winter storm tracks. J Atmos Sci 59(6):1041–1061CrossRefGoogle Scholar
  33. Hoskins BJ, Valdes PJ (1990) On the existence of storm-tracks. J Atmos Sci 47:1854–1864. doi: 10.1175/1520-0469(1990)047<1854:OTEOST>2.0.CO;2 CrossRefGoogle Scholar
  34. Hoskins BJ, McIntyre ME, Robertson AW (1985) On the use and significance of isentropic potential vorticity maps. Q J R Meteorol Soc 111:877–946CrossRefGoogle Scholar
  35. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) The North Atlantic Oscillation: climate significance and environmental impact. Geophys Monogr Ser 134:279Google Scholar
  36. James IN, James PM (1989) Ultra-low-frequency variability in a simple atmospheric circulation model. Nature 342:53–55CrossRefGoogle Scholar
  37. Jung T, Hilmer M, Ruprecht E, Kleppek S, Gulev SK, Zolina O (2003) Characteristics of the recent eastward shift of interannual NAO variability. J Clim 16:3371–3382CrossRefGoogle Scholar
  38. Jungclaus JH, Botzet M, Haak H, Keenlyside N, Luo JJ, Latif M, Marotzke J, Mikolajewicz U, Roeckner E (2006) Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM. J Clim 19:3952–3972CrossRefGoogle Scholar
  39. Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  40. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi: 10.1029/2005GL024233 CrossRefGoogle Scholar
  41. Lau NC (1978) On the three-dimensional structure of the observed transient eddy statistics of the Northern Hemisphere wintertime circulation. J Atmos Sci 35:1900–1923. doi: 10.1175/1520-0469(1978)035<1900:OTTDSO>2.0.CO;2 CrossRefGoogle Scholar
  42. Lau NC (1988) Variability of the observed midlatitude storm tracks in relation to low-frequency changes in the circulation pattern. J Atmos Sci 45:2718–2743. doi: 10.1175/1520-0469(1988)045<2718:VOTOMS>2.0.CO;2 CrossRefGoogle Scholar
  43. Lee SS, Lee JY, Wang B, Ha KJ, Heo KY, Jin FF, Straus DM, Shukla J (2012) Interdecadal changes in the storm track activity over the North Pacific and North Atlantic. Clim Dyn 39:313–327. doi: 10.1007/s00382-011-1188-9 CrossRefGoogle Scholar
  44. López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39:L02704. doi: 10.1029/2011GL050049 CrossRefGoogle Scholar
  45. Losada T, Rodríguez-Fonseca B, Mechoso CR, Ma HY (2007) Impacts of SST anomalies on the North Atlantic atmospheric circulation: a case study for the northern winter 1995/1996. Clim Dyn 29(7–8):807–819CrossRefGoogle Scholar
  46. Losada T, Rodriguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:L12705. doi: 10.1029/2012GL052423 CrossRefGoogle Scholar
  47. Lu J, Greatbatch RJ (2002) The changing relationship between the NAO and northern hemisphere climate variability. Geophys Res Lett. doi: 10.1029/2001GL014052 Google Scholar
  48. Luksch U, Raible CC, Blender R, Fraedrich K (2005) Decadal cyclone track variability in the North Atlantic. Metorol Z Spec Issue 14:747–753Google Scholar
  49. Marshall J et al (2001) North Atlantic climate variability: phenomena, impacts and mechanisms. Int J Climatol 21:1863–1898CrossRefGoogle Scholar
  50. Messori G, Caballero R (2015) On double Rossby wave breaking in the North Atlantic. J Geophys Res Atmos 120:11129–11150. doi: 10.1002/2015JD023854 CrossRefGoogle Scholar
  51. Minobe S, Kuwano-Yoshida A, Komori N, Xie SP, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452(7184):206–209CrossRefGoogle Scholar
  52. Mohino E, Janicot S, Bader J (2011) Sahel rainfall and decadal to multi-decadal sea surface temperature variability. Clim Dyn 37(3):419–440. doi: 10.1007/s00382-010-0867-2 CrossRefGoogle Scholar
  53. Moore GWK, Renfrew IA, Pickart RS (2013) Multidecadal mobility of the North Atlantic Oscillation. J Clim 26:2453–2466CrossRefGoogle Scholar
  54. Müller WA, Frankignoul C, Chouaib N (2008) Observed decadal tropical Pacific–North Atlantic teleconnections. Geophys Res Lett 35:L24810. doi: 10.1029/2008GL035901 CrossRefGoogle Scholar
  55. Murray RJ, Simmonds I (1991) A numerical scheme for tracking cyclone centers from digital data. Part I: development and operation of the scheme. Aust Meteor Mag 39:155–166Google Scholar
  56. Nakamura H, Sampe T, Goto A, Ohfuchi W, Xie SP (2008) On the importance of mid-latitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys Res Lett. doi: 10.1029/2008GL034,010 Google Scholar
  57. Nissen KM, Ulbrich U, Leckebusch GC, Kuhnel I (2014) Decadal windstorm activity in the North Atlantic–European sector and its relationship to the meridional overturning circulation in an ensemble of simulations with a coupled climate model. Clim Dyn 43(5–6):1545–1555. doi: 10.1007/s00382-013-1975-6 CrossRefGoogle Scholar
  58. North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706. doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 CrossRefGoogle Scholar
  59. Osborn TJ, Briffa KR, Tett SFB, Jones PD, Trigo RM (1999) Evaluation of the North Atlantic oscillation as simulated by a coupled climate model. Clim Dyn 15:685–702CrossRefGoogle Scholar
  60. Petterssen S, Smebye SJ (1971) On the development of extratropical cyclones. Q J R Meteorol Soc 97:457–482. doi: 10.1002/qj.49709741407 CrossRefGoogle Scholar
  61. Pinto JG, Raible CC (2012) Past and recent changes in the North Atlantic oscillation. Wiley Interdiscip Rev Clim Change 3:79–90. doi: 10.1002/wcc.150 CrossRefGoogle Scholar
  62. Pinto JG, Spangehl T, Ulbrich U, Speth P (2005) Sensitivities of cyclone detection and tracking algorithm: individual tracks and climatology. Meteorol Z 14:823–838CrossRefGoogle Scholar
  63. Pinto JG, Zacharias S, Fink AH, Leckebusch GC, Ulbrich U (2009) Factors contributing to the development of extreme North Atlantic cyclones and their relationship with the NAO. Clim Dyn 32:711–737CrossRefGoogle Scholar
  64. Pinto JG, Reyers M, Ulbrich U (2011) The variable link between PNA and NAO in observations and in multi-century CGCM simulations. Clim Dyn 36(1–2):337–354. doi: 10.1007/s00382-010-0770-x CrossRefGoogle Scholar
  65. Pinto JG, Gómara I, Masato G, Dacre HF, Woollings T, Caballero R (2014) Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe. J Geophys Res Atmos 119:13704–13719. doi: 10.1002/2014JD022305 CrossRefGoogle Scholar
  66. Raible CC, Luksch U, Fraedrich K, Voss R (2001) North Atlantic decadal regimes in a coupled GCM simulation. Clim Dyn 18:321–330CrossRefGoogle Scholar
  67. Raible CC, Luksch U, Fraedrich K (2004) Precipitation and northern hemisphere regimes. Atmos Sci Lett 5:43–55. doi: 10.1016/j.atmoscilet.2003.12.001 CrossRefGoogle Scholar
  68. Raible CC, Stocker TF, Yoshimori M, Renold M, Beyerle U, Casty C, Luterbacher J (2005) Northern Hemispheric trends of pressure indices and atmospheric circulation patterns in observations, reconstructions, and coupled GCM simulations. J Clim 18:3968–3982CrossRefGoogle Scholar
  69. Raible CC, Della-Marta P, Schwierz C, Wernli H, Blender R (2008) Northern Hemisphere extratropical cyclones: a comparison of detection and tracking methods and different reanalyses. Mon Weather Rev 136:880–897CrossRefGoogle Scholar
  70. Raible CC, Lehner F, Gonzalez-Rouco JF, Fernandez-Donado L (2014) Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD. Clim Past 10:537–550. doi: 10.5194/cp-10-537-2014 CrossRefGoogle Scholar
  71. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(14):4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  72. Reader MC, Moore GWK (1995) Stratosphere-troposphere interactions associated with a case of explosive cyclogenesis in the Labrador Sea. Tellus A 47:849–863CrossRefGoogle Scholar
  73. Reichler T, Kim J, Manzini E, Kröger J (2012) A stratospheric connection to Atlantic climate variability. Nat Geosci 5:783–787. doi: 10.1038/ngeo1586 CrossRefGoogle Scholar
  74. Rivière G, Joly A (2006) Role of the low-frequency deformation field on the explosive growth of extratropical cyclones at the jet exit. Part I: barotropic critical region. J Atmos Sci 63:1965–1981CrossRefGoogle Scholar
  75. Rivière G, Gilet JG, Oruba L (2013) Understanding the regeneration stage undergone by surface cyclones crossing a midlatitude jet in a two-layer model. J Atmos Sci 70:2832–2853. doi: 10.1175/JAS-D-12-0345.1 CrossRefGoogle Scholar
  76. Rodríguez-Fonseca B, Polo I, Serrano E, Castro M (2006) Evaluation of the North Atlantic SST forcing on the European and North African winter climate. Int J Climatol 26:179–191. doi: 10.1002/7joc.1234 CrossRefGoogle Scholar
  77. Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi: 10.1029/2009GL040048 CrossRefGoogle Scholar
  78. Roeckner E et al (2003) The atmospheric general circulation model ECHAM 5. PART I: model description. MPI Report 349Google Scholar
  79. Rogers JC (1997) North Atlantic storm track variability and its association to the North Atlantic Oscillation and climate variability of northern Europe. J Clim 10:1635–1647. doi: 10.1175/1520-0442(1997)010<1635:NASTVA>2.0.CO;2 CrossRefGoogle Scholar
  80. Sanders F (1986) Explosive cyclogenesis in the west-central North Atlantic Ocean. Part I: composite structure and mean behavior. Mon Weather Rev 114:1781–1794CrossRefGoogle Scholar
  81. Sanders F, Gyakum JR (1980) Synoptic-dynamic climatology of the bomb. Mon Weather Rev 108:1589–1606CrossRefGoogle Scholar
  82. Santos JA, Woollings T, Pinto JG (2013) Are the winters 2010 and 2012 archetypes exhibiting extreme opposite behavior of the North Atlantic jet stream? Mon Weather Rev 141:3626–3640. doi: 10.1175/MWR-D-13-00024.1 CrossRefGoogle Scholar
  83. Schneider EK, Bengtsson L, Hu ZZ (2003) Forcing of Northern Hemisphere climate trends. J Atmos Sci 60:1504–1521CrossRefGoogle Scholar
  84. Seiler C, Zwiers FW (2015) How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere? Clim Dyn. doi: 10.1007/s00382-015-2642-x Google Scholar
  85. Shapiro MA, Keyser D (1990) Extratropical cyclones: the Erik Palmen memorial volume, chapter 10. Am Meteorol, SocGoogle Scholar
  86. Shindell DT, Schmidt GA, Mann ME, Rind D, Waple A (2001) Solar forcing of regional climate change during the Maunder Minimum. Science 294:2149–2152. doi: 10.1126/science.1064363 CrossRefGoogle Scholar
  87. Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic Oscillation a random walk? Int J Climatol 20:1–18CrossRefGoogle Scholar
  88. Strong C, Magnusdottir G (2008) How Rossby wave breaking over the Pacific forces the North Atlantic Oscillation. Geophys Res Lett 35:L10706. doi: 10.1029/2008GL033578 CrossRefGoogle Scholar
  89. Sun C, Li J, Jin F (2015) A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO. Clim Dyn 45:2083–2099. doi: 10.1007/s00382-014-2459-z CrossRefGoogle Scholar
  90. Sung MK, Ham YG, Kug JS, An SI (2013) An alterative effect by the tropical North Atlantic SST in intraseasonally varying El Nino teleconnection over the North Atlantic. Tellus A 65:19863. doi: 10.3402/tellusa.v65i0.19863 CrossRefGoogle Scholar
  91. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  92. Trenberth KE, Branstator GW, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(C7):14291–14324. doi: 10.1029/97JC01444 CrossRefGoogle Scholar
  93. Trigo IF (2006) Climatology and interannual variability of storm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Dyn 26:127–143CrossRefGoogle Scholar
  94. Uccellini LW (1990) Processes contributing to the rapid development of extratropical cyclones. In: Newton C, Holopainen EO (eds) Extratropical cyclones: the Erik Palmen memorial volume. American Meteorological Society, Boston, MA, pp 81–105Google Scholar
  95. Ulbrich U, Christoph M (1999) A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing. Clim Dyn 15:551–559CrossRefGoogle Scholar
  96. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  97. Vicente-Serrano SM, López-Moreno JI (2008) Differences in the non-stationary influence of the North Atlantic Oscillation on European precipitation under different scenarios of greenhouse gas concentrations. Geophys Res Lett 35:L18710. doi: 10.1029/2008GL034832 CrossRefGoogle Scholar
  98. Villamayor J, Mohino E (2015) Robust Sahel drought due to the Interdecadal Pacific Oscillation in CMIP5 simulations. Geophys Res Lett 42:1214–1222. doi: 10.1002/2014GL062473 CrossRefGoogle Scholar
  99. Visbeck M, Cullen H, Krahmann G, Naik N (1998) An ocean model’s response to North Atlantic Oscillation like wind forcing. Geophys Res Lett 25:4521–4524CrossRefGoogle Scholar
  100. Visbeck M, Chassignet E, Curry R, Delworth T, Dickson B, Krahmann G (2003) The Ocean’s response to North Atlantic oscillation variability. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climate significance and environmental impact. Geophysical monograph series, 134. American Geophysical Union, Washington, DC, pp 113–146CrossRefGoogle Scholar
  101. von Storch H, Zwiers F (1999) Statistical analysis in climate research. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  102. Wang C (2002) Atlantic climate variability and its associated atmospheric circulation cells. J Clim 15:1516–1536. doi: 10.1175/1520-0442(2002)015<1516:ACVAIA>2.0.CO;2 CrossRefGoogle Scholar
  103. Wang C, Zhang L (2013) multidecadal ocean temperature and salinity variability in the tropical North Atlantic: linking with the AMO, AMOC, and subtropical cell. J Clim 26:6137–6162. doi: 10.1175/JCLI-D-12-00721.1 CrossRefGoogle Scholar
  104. Wang YH, Magnusdottir G, Stern H, Tian X, Yu Y (2012) Decadal variability of the NAO: introducing an augmented NAO index. Geophys Res Lett 39:L21702. doi: 10.1029/2012GL053413 Google Scholar
  105. Wang C, Zhang L, Lee SK, Wu L, Mechoso CR (2014) A global perspective on CMIP5 climate model biases. Nat Clim Change 4:201–205CrossRefGoogle Scholar
  106. Wanner H, Bronnimann S, Casty C, Gyalistras D, Luterbacher J, Schmutz C, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation—concepts and studies. Surv Geophys 22:321–382CrossRefGoogle Scholar
  107. Wernli H, Dirren S, Liniger MA, Zillig M (2002) Dynamical aspects of the life-cycle of the winter storm “Lothar” (24–26 December 1999). Q J R Meteorol Soc 128:405–429CrossRefGoogle Scholar
  108. Woollings T, Hoskins B, Blackburn M, Berrisford P (2008) A new Rossby wave-breaking Interpretation of the North Atlantic Oscillation. J Atmos Sci 65:609–626CrossRefGoogle Scholar
  109. Woollings T, Hannachi A, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136:856–868. doi: 10.1002/qj.625 CrossRefGoogle Scholar
  110. Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ (2012) Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat Geosci 5:313–317CrossRefGoogle Scholar
  111. Woollings T, Franzke C, Hodson DLR, Dong B, Barnes EA, Raible CC, Pinto JG (2015) Contrasting interannual and multi-decadal NAO variability. Clim Dyn 45:539–556. doi: 10.1007/s00382-014-2237-y CrossRefGoogle Scholar
  112. Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic and Southern Oscillations. Bull Am Meteorol Soc 80:245–255CrossRefGoogle Scholar
  113. Zappa G, Masato G, Shaffrey L, Woollings T, Hodges K (2014) Linking Northern Hemisphere blocking and storm track biases in the CMIP5 climate models. Geophys Res Lett 41:135–139. doi: 10.1002/2013GL058480 CrossRefGoogle Scholar
  114. Zhang L, Wang C (2013) Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations. J Geophys Res Oceans 118:5772–5791. doi: 10.1002/jgrc.20390 CrossRefGoogle Scholar
  115. Zhang W, Wang L, Xiang B, Qi L, He J (2015) Impacts of two types of La Niña on the NAO during boreal winter. Clim Dyn 44:1351–1366CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Iñigo Gómara
    • 1
    • 2
  • Belén Rodríguez-Fonseca
    • 1
    • 2
  • Pablo Zurita-Gotor
    • 1
    • 2
  • Sven Ulbrich
    • 3
  • Joaquim G. Pinto
    • 3
    • 4
  1. 1.Dpto. Geofísica y Meteorología, Facultad de CC. FísicasUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Geociencias (IGEO)UCM, CSICMadridSpain
  3. 3.Institute for Geophysics and MeteorologyUniversity of CologneCologneGermany
  4. 4.Department of MeteorologyUniversity of ReadingReadingUK

Personalised recommendations