Climate Dynamics

, Volume 47, Issue 9–10, pp 2991–3010 | Cite as

The role of local atmospheric forcing on the modulation of the ocean mixed layer depth in reanalyses and a coupled single column ocean model

  • Byju Pookkandy
  • Dietmar Dommenget
  • Nicholas Klingaman
  • Scott Wales
  • Christine Chung
  • Claudia Frauen
  • Holger Wolff


The role of local atmospheric forcing on the ocean mixed layer depth (MLD) over the global oceans is studied using ocean reanalysis data products and a single-column ocean model coupled to an atmospheric general circulation model. The focus of this study is on how the annual mean and the seasonal cycle of the MLD relate to various forcing characteristics in different parts of the world’s oceans, and how anomalous variations in the monthly mean MLD relate to anomalous atmospheric forcings. By analysing both ocean reanalysis data and the single-column ocean model, regions with different dominant forcings and different mean and variability characteristics of the MLD can be identified. Many of the global oceans’ MLD characteristics appear to be directly linked to the different atmospheric forcing characteristics at different locations. Here, heating and wind-stress are identified as the main drivers; in some, mostly coastal, regions the atmospheric salinity forcing also contributes. The annual mean MLD is more closely related to the annual mean wind-stress and the MLD seasonality is more closely related to the seasonality in heating. The single-column ocean model, however, also points out that the MLD characteristics over most global ocean regions, and in particular in the tropics and subtropics, cannot be maintained by local atmospheric forcings only, but are also a result of ocean dynamics that are not simulated in a single-column ocean model. Thus, lateral ocean dynamics are essential in correctly simulating observed MLD.


Ocean mixed layer depth Atmospheric forcings Coupled single column ocean model Annual mean Seasonal variability Flux correction 



The authors would like to thank Australian National Computational Infrastructure, in Canberra, for providing computational platform for simulation of the ACCESS-KPP coupled model. The ARC Climate System Science (CE110001028) supported this study. Nicholas Klingaman was funded by the National Centre for Atmospheric Science-Climate, a collaborative centre of the Natural Environment Research Council, under agreement R8/H12/83/001.

Supplementary material

382_2016_3009_MOESM1_ESM.pdf (1.9 mb)
Supplementary material 1 (PDF 1931 kb)


  1. Adamec D, Elsberry RL (1984) The use of mean atmospheric forcing in an ocean mixed-layer model. J Phys Oceanogr 14:1670–1676CrossRefGoogle Scholar
  2. Alexander M, Scott J, Deser C (2000) Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. J Geophys Res 105:16823. doi: 10.1029/2000JC900074 CrossRefGoogle Scholar
  3. Antonov JI, Seidov D, Boyer TP, Locarnini RA, Mishonov AV, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World ocean atlas 2009, vol 2, salinity. In: Levitus S (ed) NOAA Atlas NESDIS 69, U.S. Government Printing Office, WashingtonGoogle Scholar
  4. Bates N (2001) Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre. Deep Sea Res Part II 48:15071528. doi: 10.1016/S0967-0645(00)00151-X CrossRefGoogle Scholar
  5. Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface. Washington State Convention and Trade Center, Seattle, pp 11–15Google Scholar
  6. Bi D, Dix M, Marsland SJ et al (2013) The ACCESS coupled model: description, control climate and evaluation. Aust Meteorol Oceanogr J 63:41–64Google Scholar
  7. Brainerd KE, Gregg MC (1995) Surface mixed and mixing layer depths. Deep Sea Res Part I 42:1521–1543. doi: 10.1016/0967-0637(95)00068-H CrossRefGoogle Scholar
  8. Carton J, Giese B (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:29993017. doi: 10.1175/2007MWR1978.1 CrossRefGoogle Scholar
  9. Carton J, Grodsky S, Liu H (2008) Variability of the oceanic mixed layer, 1960–2004. J Clim 21:10291047. doi: 10.1175/2007JCLI1798.1 Google Scholar
  10. Chen D, Busalacchi A, Rothstein L (1994) The roles of vertical mixing, solar radiation, and wind stress in a model simulation of the sea surface temperature seasonal cycle in the tropical Pacific Ocean. J Geophys Res Oceans 99:20345–20359. doi: 10.1029/94JC01621 CrossRefGoogle Scholar
  11. Cronin M, Kessler W (2002) Seasonal and interannual modulation of mixed layer variability at 0°, 110°W. Deep Sea Res Part I 49:117. doi: 10.1016/S0967-0637(01)00043-7 CrossRefGoogle Scholar
  12. Dommenget D, Latif M (2002) Analysis of observed and simulated SST spectra in the midlatitudes. Clim Dyn 19:277–288. doi: 10.1007/s00382-002-0229-9 CrossRefGoogle Scholar
  13. Dommenget D, Latif M (2008) Generation of hyper climate modes. Geophys Res Lett. doi: 10.1029/2007GL031087 Google Scholar
  14. Dong S, Gille S, Sprintall J (2007) An assessment of the Southern Ocean mixed layer heat budget. J Clim 20:4425–4442. doi: 10.1175/JCLI4259.1 CrossRefGoogle Scholar
  15. Dong S, Sprintall J, Gille S, Talley L (2008) Southern Ocean mixed layer depth from Argo float profiles. J Geophys Res Oceans. doi:  10.1029/2006JC004051
  16. Dong S, Garzoli S, Baringer M (2009) An assessment of the seasonal mixed layer salinity budget in the Southern Ocean. J Geophys Res. doi: 10.1029/2008JC005258 Google Scholar
  17. Fasham M (1995) Variations in the seasonal cycle of biological production in subarctic oceans: a model sensitivity analysis. Deep Sea Res Part I 42:1111–1149. doi: 10.1016/0967-0637(95)00054-A CrossRefGoogle Scholar
  18. Godfrey J, Lindstrom E (1989) The heat budget of the equatorial western Pacific surface mixed layer. J Geophys Res 94:8007–8017. doi: 10.1029/JC094iC06p08007 CrossRefGoogle Scholar
  19. Halkides D, Lee T (2009) Mechanisms controlling seasonal-to-interannual mixed layer temperature variability in the southeastern tropical Indian Ocean. J Geophys Res. doi: 10.1029/2008JC004949 Google Scholar
  20. Hirons L, Klingaman N, Woolnough S (2015) MetUM-GOML1: a near-globally coupled atmosphere–ocean-mixed-layer model. Geosci Model Dev 8:363–379. doi: 10.5194/gmd-8-363-2015 CrossRefGoogle Scholar
  21. Kantha L, Clayson C (1994) An improved mixed layer model for geophysical applications. J Geophys Res Oceans 99:25235–25266. doi: 10.1029/94JC02257 CrossRefGoogle Scholar
  22. Kantha L, Clayson C (2000) Small scale processes in geophysical fluid flows. International geophysics series, vol 67. Academic Press, New York, pp 157–160Google Scholar
  23. Kara BA, Rochford P, Hurlburt H (2000) An optimal definition for ocean mixed layer depth. J Geophys Res 105:16803–16821. doi: 10.1029/2000JC900072 CrossRefGoogle Scholar
  24. Kara BA, Rochford P, Hurlburt H (2003) Mixed layer depth variability over the global ocean. J Geophys Res 108:3079. doi: 10.1029/2000JC000736 CrossRefGoogle Scholar
  25. Keerthi M, Lengaigne M, Vialard J et al (2012) Interannual variability of the Tropical Indian Ocean mixed layer depth. Clim Dyn 40:743–759. doi: 10.1007/s00382-012-1295-2 CrossRefGoogle Scholar
  26. Klingaman N, Woolnough S (2014) The role of air–sea coupling in the simulation of the Madden–Julian oscillation in the Hadley Centre model. QJR Meteorol Soc 140:2272–2286. doi: 10.1002/qj.2295 CrossRefGoogle Scholar
  27. Köhl A (2014) Evaluation of the GECCO2 ocean synthesis: transports of volume, heat and freshwater in the Atlantic. Q J R Meteorol Soc. doi: 10.1002/qj.2347 Google Scholar
  28. Kröger J, Müller W, Storch J-S (2012) Impact of different ocean reanalyses on decadal climate prediction. Clim Dyn 39:795–810. doi: 10.1007/s00382-012-1310-7 CrossRefGoogle Scholar
  29. Large WG, Crawford GB (1995) Observations and simulations of upper ocean response to wind events during the Ocean Storms Experiment. J Phys Oceanogr 25:2831–2852CrossRefGoogle Scholar
  30. Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403. doi: 10.1029/94RG01872 CrossRefGoogle Scholar
  31. Locarnini RA, Mishonov AV, Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Johnson DR (2010) World ocean atlas 2009, volume 1, temperature. In: Levitus S (ed) NOAA Atlas NESDIS 68, U.S. Government Printing Office, WashingtonGoogle Scholar
  32. Lorbacher K, Dommenget D, Niiler P, Köhl A (2006) Ocean mixed layer depth: a subsurface proxy of ocean atmosphere variability. J Geophys Res Oceans. doi:  10.1029/2003JC002157
  33. Maykut G, McPhee M (1995) Solar heating of the Arctic mixed layer. J Geophys Res 100:24691–24703. doi: 10.1029/95JC02554 CrossRefGoogle Scholar
  34. Montégut C, Madec G, Fischer A, et al (2004) Mixed layer depth over the global ocean: an examination of profile data and a profile based climatology. J Geophys Res Oceans. doi:  10.1029/2004JC002378
  35. Montégut C, Mignot J, Lazar A, Cravatte S (2007) Control of salinity on the mixed layer depth in the world ocean: 1. General description. J Geophys Res Oceans. doi: 10.1029/2006JC003953 Google Scholar
  36. Monterey G, Levitus S (1997) Seasonal variability of mixed layer depth for the World Ocean, NOAA Atlas NESDIS 14:100 p. Natl. Oceanic Atmos. Admin. Silver Spring, MdGoogle Scholar
  37. Narvekar J, Kumar S (2006) Seasonal variability of the mixed layer in the central Bay of Bengal and associated changes in nutrients and chlorophyll. Deep Sea Res Part I 53:820–835. doi: 10.1016/j.dsr.2006.01.012 CrossRefGoogle Scholar
  38. Peter A, Hénaff M, Penhoat Y et al (2006) A model study of the seasonal mixed layer heat budget in the equatorial Atlantic. J Geophys Res. doi: 10.1029/2005JC003157 Google Scholar
  39. Polovina J, Mitchum G, Evans G (1995) Decadal and basin-scale variation in mixed layer depth and the impact on biological production in the Central and North Pacific, 1960–88. Deep Sea Res Part I 42:1701–1716. doi: 10.1016/0967-0637(95)00075-H CrossRefGoogle Scholar
  40. Qui B, Chen S, Hacker P (2004) Synoptic-Scale air–sea flux forcing in the western North Pacific: observations and their impact on SST and the mixed layer. J Phys Oceanogr 34:2148–2159. doi: 10.1175/1520-0485(2004)034<2148:SAFFIT>2.0.CO;2 CrossRefGoogle Scholar
  41. Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371. doi: 10.1126/science.1097403 CrossRefGoogle Scholar
  42. Sallée JB, Wienders N, Speer K, Morrow R (2006) Formation of subantarctic mode water in the southeastern Indian Ocean. Ocean Dyn 56:525–542. doi: 10.1007/s10236-005-0054-x CrossRefGoogle Scholar
  43. Swenson M, Hansen D (1999) Tropical Pacific Ocean mixed layer heat budget: the Pacific cold tongue. J Phys Oceanogr 29:69–81. doi: 10.1175/1520-0485(1999)029<0069:TPOMLH>2.0.CO;2 CrossRefGoogle Scholar
  44. Takahashi T, Feely R, Weiss R et al (1997) Global air–sea flux of CO2: an estimate based on measurements of sea–air pCO2 difference. Proc Natl Acad Sci 94:8292–8299. doi: 10.1073/pnas.94.16.8292 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Byju Pookkandy
    • 1
  • Dietmar Dommenget
    • 1
  • Nicholas Klingaman
    • 2
  • Scott Wales
    • 3
  • Christine Chung
    • 4
  • Claudia Frauen
    • 5
  • Holger Wolff
    • 1
  1. 1.ARC Centre of Excellence for Climate System Science, School of Earth Atmosphere and EnvironmentMonash UniversityClaytonAustralia
  2. 2.National Centre for Atmospheric Science-Climate, Department of MeteorologyUniversity of ReadingReadingUnited Kingdom
  3. 3.ARC Centre of Excellence for Climate System Science, School of Earth SciencesUniversity of MelbourneMelbourneAustralia
  4. 4.Bureau of MeteorologyMelbourneAustralia
  5. 5.CNRM-GAME (Météo-France/CNRS)ToulouseFrance

Personalised recommendations