Climate Dynamics

, Volume 47, Issue 9–10, pp 2935–2953 | Cite as

Projections of glacier change in the Altai Mountains under twenty-first century climate scenarios

  • Yong ZhangEmail author
  • Hiroyuki Enomoto
  • Tetsuo Ohata
  • Hideyuki Kitabata
  • Tsutomu Kadota
  • Yukiko Hirabayashi


We project glacier surface mass balances of the Altai Mountains over the period 2006–2100 for the representative concentration pathway (RCP) 4.5 and RCP8.5 scenarios using daily near-surface air temperature and precipitation from 12 global climate models in combination with a surface mass balance model. The results indicate that the Altai glaciers will undergo sustained mass loss throughout the 21st for both RCPs and reveal the future fate of glaciers of different sizes. By 2100, glacier area in the region will shrink by 26 ± 10 % for RCP4.5, while it will shrink by 60 ± 15 % for RCP8.5. According to our simulations, most disappearing glaciers are located in the western part of the Altai Mountains. For RCP4.5, all glaciers disappearing in the twenty-first century have a present-day size smaller than 5.0 km2, while for RCP8.5, an additional ~7 % of glaciers in the initial size class of 5.0–10.0 km2 also vanish. We project different trends in the total meltwater discharge of the region for the two RCPs, which does not peak before 2100, with important consequences for regional water availability, particular for the semi-arid and arid regions. This further highlights the potential implications of change in the Altai glaciers on regional hydrology and environment.


Glacier mass balance Climate change GCM Water availability Altai glaciers 



This study was supported by MEXT (Japanese Ministry of Education, Culture, Sports, Science and Technology) through the Green Network of Excellence (GRENE) Arctic Climate Change Research Project. We acknowledgement Akiko Sakai of Nagoya University and the RGI consortium for providing glacier inventory data, CMIP5 for GCM scenarios, and WGMS for glacier mass balance data.


  1. Arendt A et al (2014) Randolph Glacier Inventory [v4.0]: a dataset of global glacier outlines. Boulder, CO. Digital mediaGoogle Scholar
  2. Bahr DB (1997) Width and length scaling of glaciers. J Glaciol 43(145):557–562Google Scholar
  3. Bahr DB, Meier MF, Peckham SD (1997) The physical basis of glacier volume-area scaling. J Geophys Res 102(B9):20355–20362CrossRefGoogle Scholar
  4. Bahr DB, Pfeffer WT, Sassolas C, Meier MF (1998) Response time of glaciers as a function of size and mass balance: 1 Theory. J Geophys Res 103(B5):9777–9782. doi: 10.1029/98jb00507 CrossRefGoogle Scholar
  5. Bahr DB, Pfeffer WT, Kaser G (2015) A review of volume-area scaling of glaciers. Rev Geophys 53:95–140. doi: 10.1002/2014RG000470 CrossRefGoogle Scholar
  6. Bliss A, Hock R, Radić V (2014) Global response of glacier runoff to twenty-first century climate change. J Geophys Res 119(4):717–730. doi: 10.1002/2013jf002931 CrossRefGoogle Scholar
  7. Braithwaite RJ, Zhang Y (2000) Sensitivity of mass balance of five Swiss glaciers to temperature changes assessed by tuning a degree-day model. J Glaciol 46(152):7–14. doi: 10.3189/172756500781833511 CrossRefGoogle Scholar
  8. Braithwaite RJ, Zhang Y, Raper SCB (2002) Temperature sensintivity of the mass balance of mountain glaciers and ice caps as a climatiological characteristic. Z Gletsch kd Glazialgeol 38:35–61Google Scholar
  9. Casassa G, López P, Pouyaud B, Escobar F (2009) Detection of changes in glacial run-off in alpine basins: examples from North America, the Alps, central Asia and the Andes. Hydrol Process 23(1):31–41. doi: 10.1002/hyp.7194 CrossRefGoogle Scholar
  10. Clarke GKC, Jarosch AH, Anslow FS, Radić V, Menounos B (2015) Projected deglaciation of western Canada in the twenty-first century. Nat Geosci 8:372–377. doi: 10.1038/ngeo2407 CrossRefGoogle Scholar
  11. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  12. Cuffey KM, Paterson WSB (2010) The physics of glaciers. Butterworth-Heinemann, OxfordGoogle Scholar
  13. Dyurgerov MB (2010) Reanalysis of glacier changes: from the IGY to the IPY, 1960–2008. Institute of Arctic and Alpine Research, University of Colorado at Boulder, BoulderGoogle Scholar
  14. Dyurgerov M, Bring A, Destouni G (2010) Integrated assessment of changes in freshwater inflow to the Arctic Ocean. J Geophys Res 115:D12116. doi: 10.1029/2009jd013060 CrossRefGoogle Scholar
  15. Fang JY, Yoda K (1988) Climate and vegetation in China (I), changes in the altitudinal lapse rate of temperature and distribution of sea level temperature. Ecol Res 3(1):37–51CrossRefGoogle Scholar
  16. Graham LP, Andréasson J, Carlsson B (2007) Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods-a case study on the Lule River basin. Clim Change 81(51):293–307. doi: 10.1007/s10584-006-9215-2 CrossRefGoogle Scholar
  17. Hay L, Wilby RL, Leavesley GH (2000) A comparison of delta change and downscaled GCM scenarios for three mountainous basins in the United States. J Am Water Res Assoc 36(2):387–397. doi: 10.1111/j.1752-1688.2000.tb04276.x CrossRefGoogle Scholar
  18. Hirabayashi Y, Döll P, Kanae S (2010) Global-scale modeling of glacier mass balances for water resources assessments: glacier mass changes between 1948 and 2006. J Hydrol 390:245–256. doi: 10.1016/j.jhydrol.2010.07.001 CrossRefGoogle Scholar
  19. Hirabayashi Y, Zhang Y, Watanabe S, Koirala S, Kanae S (2013) Projection of glacier mass changes under a high-emission climate scenario using the global glacier model HYOGA2. Hydrol Res Lett 7(1):6–11. doi: 10.3178/hrl.7.6 CrossRefGoogle Scholar
  20. Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282:104–115. doi: 10.1016/S0022-1694(03)00257-9 CrossRefGoogle Scholar
  21. Jansson P, Hock R, Schneider T (2003) The concept of glacier storage: a review. J Hydrol 283:116–129. doi: 10.1016/S0022-1694(03)00258-0 CrossRefGoogle Scholar
  22. Kadota T, Gombo D, Kalsan P, Namgur D (2011) Glaciological research in the Mongolian Altai, 2003–2009. Bull Glaciol Res 29:41–50CrossRefGoogle Scholar
  23. Kalugin I, Daryin A, Smolyaninova L, Andreev A, Diekmann B, Khlystov O (2007) 800-yr-long records of annual air temperature and precipitation over southern Siberia inferred from Teletskoye Lake sediments. Quat Res 67(3):400–410. doi: 10.1016/j.yqres.2007.01.007 CrossRefGoogle Scholar
  24. Kaser G, Großhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci USA 107(47):20223–20227. doi: 10.1073/pnas.1008162107 CrossRefGoogle Scholar
  25. Kitabata H, Sugiura K, Kadota T (2014) Analysis of climate trends in the Altai Mountains between 1988 and 2012. In: Abstract #C41B-0346 presented at 2014 Fall Meeting. AGU, San Francisco. 15–20 Dec 2014Google Scholar
  26. Klinge M, Böhner J, Lehmkuhl F (2003) Climate pattern, snowand timberlines in the Altai mountains, central Asia. Erdkunde 57(4):296–307. doi: 10.3112/erdkunde.2003.04.04 CrossRefGoogle Scholar
  27. Koirala S, Hirabayashi Y, Mahendran R, Kanae S (2014) Global assessment of agreement among streamflow projections using CMIP5 model outputs. Environ Res Lett 9(6):064017. doi: 10.1088/1748-9326/9/6/064017 CrossRefGoogle Scholar
  28. Li Z, Li K, Wang L (2010) Study on recent glacier changes and their impact on water resources in Xinjiang, North Western China. Quat Sci 30(1):96–106Google Scholar
  29. Li X, Wang L, Chen D, Yang K, Xue B, Sun L (2013) Near-surface air temperature lapse rates in the mainland China during 1962–2011. J Geophys Res 118(14):7505–7515. doi: 10.1002/jgrd.50553 Google Scholar
  30. Liu Q, Liu S (2015) Response of glacier mass balance to climate change in the Tianshan Mountains during the second half of the twentieth century. Clim Dyn. doi: 10.1007/s00382-015-2585-2 Google Scholar
  31. Liu Q, Liu S, Zhang Y, Zhang YS (2011) Surface ablation features and recent variation of the lower ablation area of the Hailuogou Glacier, Mt. Gongga. J Glaciol Geocryol 33(2):227–236 (in Chinese with English abstract) Google Scholar
  32. Marzeion B, Jarosch AH, Hofer M (2012) Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6:1295–1322. doi: 10.5194/tcd-6-1295-2012 CrossRefGoogle Scholar
  33. Minder JR, Mote PW, Lundquist JD (2010) Surface temperature lapse rates over complex terrain: lessons from the Cascade Mountains. J Geophys Res 115:D14122. doi: 10.1029/2009JD013493 CrossRefGoogle Scholar
  34. Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi: 10.1038/nature08823 CrossRefGoogle Scholar
  35. Narozhniy Y, Zemtsov V (2011) Current State of the Altai glaciers (Russia) and trends over the period of instrumental observations 1952–2008. Ambio 40(6):575–588. doi: 10.1007/s13280-011-0166-0 CrossRefGoogle Scholar
  36. Nuimura T, Sakai A, Taniguchi K, Nagai H, Lamsal D, Tsutaki S, Kozawa A, Hoshina Y, Takenaka S, Omiya S, Tsunematsu K, Tshering P, Fujita K (2015) The GAMDAM glacier inventory: a quality controlled inventory of Asian glaciers. Cryosphere 9(3):849–864. doi: 10.5194/tc-9-849-2015 CrossRefGoogle Scholar
  37. Oerlemans J, Fortuin JPF (1992) Sensitivity of glaciers and small ice caps to greenhouse warming. Science 258:115–117. doi: 10.1126/science.1258.5079.115 CrossRefGoogle Scholar
  38. Pan CG (2013) Inventory of Mongolian glaciers for the Global Land Ice Measurements from Space (GLIMS) Program. The University of Montana, MontanaGoogle Scholar
  39. Panagiotopoulos F, Shahgedanova M, Hannachi A, Stephenson DB (2005) Observed trends and teleconnections of the Siberian high: a recently declining center of action. J Clim 18(9):1411–1422. doi: 10.1175/JCLI3352.1 CrossRefGoogle Scholar
  40. Pfeffer WT, Arendt AA, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen J-O, Hock R, Kaser G, Kienholz C, Miles ES, Moholdt G, Mӧlg N, Paul F, Radic V, Rastner P, Raup BH, Rich J, Sharp MJ (2014) The Randolph Glacier Inventory: a globally complete inventory of glaciers. J Glaciol 60(221):537–652. doi: 10.3189/2014JoG13J176 CrossRefGoogle Scholar
  41. Radić V, Hock R (2011) Regionally differentiated contribution of mountain glaciers and ice caps to future sea-level rise. Nat Geosci 4:91–94. doi: 10.1038/ngeo1052 CrossRefGoogle Scholar
  42. Radić V, Hock R, Oerlemans J (2007) Volume–area scaling vs flowline modelling in glacier volume projections. Ann Glaciol 46:234–240. doi: 10.3189/172756407782871288 CrossRefGoogle Scholar
  43. Radić V, Hock R, Oerlemans J (2008) Analysis of scaling methods in deriving future volume evolutions of valley glaciers. J Glaciol 54(187):601–612. doi: 10.3189/002214308786570809 CrossRefGoogle Scholar
  44. Sakai A, Nuimura T, Fujita K, Takenaka S, Nagai H, Lamsal D (2015) Climate regime of Asian glaciers revealed by GAMDAM glacier inventory. Cryosphere 9(3):865–880. doi: 10.5194/tc-9-865-2015 CrossRefGoogle Scholar
  45. Shahgedanova M, Nosenko G, Khromova T, Muraveyev A (2010) Glacier shrinkage and climatic change in the Russian Altai from the mid-twentieth century: an assessment using remote sensing and PRECIS regional climate model. J Geophys Res 115:D16107. doi: 10.1029/2009JD012976 CrossRefGoogle Scholar
  46. Shi Y, Liu C, Wang Z, Liu S, Ye B (2005) A concise China glacier inventory. Shanghai Science Popularization Press, Shanghai (in Chinese) Google Scholar
  47. Singh P, Kumar N (1997) Effect of orography on precipitation in the western Himalayan region. J Hydrol 199(1–2):183–206. doi: 10.1016/S0022-1694(96)03222-2 CrossRefGoogle Scholar
  48. Skamarock WC, Klemp JB (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comput Phys 227:3465–3485. doi: 10.1016/ CrossRefGoogle Scholar
  49. Skamarock W, Klemp JB, Dudhia J, Gill DO, Barker D, Duda MG, Huang X-Y, Wang W (2008) A Description of the Advanced Research WRF Version 3. NCAR Technical Note NCAR/TN-475 + STR,  10.5065/D68S4MVH. doi: 10.5065/D68S4MVH
  50. Sperna Weiland FC, van Beek LPH, Kwadijk JCJ, Bierkens MFP (2010) The ability of a GCM-forced hydrological model to reproduce global discharge variability. Hydrol Earth Syst Sci 14:1595–1621. doi: 10.5194/hess-14-1595-2010 CrossRefGoogle Scholar
  51. Su F, Duan X, Chen D, Hao Z, Cuo L (2013) Evaluation of the global climate models in the CMIP5 over the Tibetan Plateau. J Clim 26:3187–3208. doi: 10.1175/JCLI-D-12-00321.1 CrossRefGoogle Scholar
  52. Sugiura K, Kitabata H and Kadota T (2014) Validation of snow cover simulated by the Weather Research and Forecasting (WRF) model using in situ snow survey data in the Altai Mountains. In: Abstract #C43A-0369 presented at 2014 Fall Meeting. AGU, San Francisco. 15–20 Dec 2014Google Scholar
  53. Surazakov AB, Aizen VB, Aizen EM, Nikitin SA (2007) Glacier changes in the Siberian Altai Mountains, Ob river basin, (1952–2006) estimated with high resolution imagery. Environ Res Lett 2(4):045017. doi: 10.1088/1748-9326/2/4/045017 CrossRefGoogle Scholar
  54. Tachikawa T, Kaku M, Iwasaki A, Gesch D, Oimoen M, Zhang Z, Danielson J, Krieger T, Curtis B, Haase J, Abrams M, Crippen R, Carabajal C (2011) ASTER Global Digital Elevation Model Version 2—Summary of Validation Results. Technical report, NASA Land Processes Distributed Active Archive Center and the Joint Japan-US ASTER Science TeamGoogle Scholar
  55. Taylor KE, Stouffer RJ, Meehl GA (2012) An Overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  56. Van Beek LPH (2008) Forcing PCR-GLOBWB with CRU meteorological data. Utrecht University, Utrecht.
  57. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  58. Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Kwok R, Mote P, Murray T, Paul F, Ren J, Rignot E, Solomina O, Steffen K, Zhang T (2013) Observations: cryosphere. In Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  59. Wang XL, Cho H-R (1997) Spatial-temporal structures of trend and oscillatory variabilities of precipitation over Northern Eurasia. J Clim 10:2285–2298CrossRefGoogle Scholar
  60. Wei J, Liu S, Xu J, Guo W, Bao W, Shangguan D, Jiang Z (2015) Mass loss from glaciers in the Chinese Altai Mountains between 1959 abd 2008 revealed based on historical maps, SRTM, and ASTER images. J Mt Sci 12:330–343. doi: 10.1007/s11629-014-3175-1 CrossRefGoogle Scholar
  61. WGMS (2014) Fluctuations of Glaciers Database World Glacier Monitoring Service, Zurich, Switzerland. doi: 10.5904/wgms-fog-2014-09
  62. Woodward J, Sharp M, Arendt A (1997) The influence of superimposed-ice formation on the sensitivity of glacier mass balance to climate change. Ann Glaciol 24:186–190Google Scholar
  63. Yang W, Yao T, Xu B, Ma L, Wang Z, Wan M (2010) Characteristics of recent temperate glacier fluctuations in the Parlung Zangbo River basin, southeast Tibetan Plateau. Chin Sci Bull 55:2097–2102. doi: 10.1007/s11434-010-3214-4 CrossRefGoogle Scholar
  64. Yao X, Liu S, Guo W, Huai B, Sun M, Xu J (2012) Glacier change of Altay Mountain in China from 1960 to 2009–Based on the Second Glacier Inventory of China. J Nat Resour 27(10):1734–1745 (in Chinese with English abstract) Google Scholar
  65. Zhang Y, Liu S, Ding Y (2006) Observed degree-day factors and their spatial variation on glaciers in western China. Ann Glaciol 46:301–306. doi: 10.3189/172756406781811952 CrossRefGoogle Scholar
  66. Zhang Y, Enomoto H, Ohata T, Kitabata H, Kadota T, Hirabayashi Y (2014) Modeling the mass balance of Arctic-Asian glaciers using the WRF data: case study in the Altai Mountains. In: Abstract #C41B-0350 presented at 2014 Fall Meeting. AGU, San Francisco. 15–20 Dec 2014Google Scholar
  67. Zhang Y, Hirabayashi Y, Liu Q, Liu S (2015) Glacier runoff and its impact for a highly glacierized catchment in the south-eastern Tibetan Plateau: past and future trends. J Glaciol 61(228):713–730. doi: 10.3189/2015JoG14J188 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yong Zhang
    • 1
    Email author
  • Hiroyuki Enomoto
    • 1
    • 2
  • Tetsuo Ohata
    • 1
  • Hideyuki Kitabata
    • 3
  • Tsutomu Kadota
    • 3
  • Yukiko Hirabayashi
    • 4
  1. 1.Arctic Environment Research CenterNational Institute of Polar ResearchTokyoJapan
  2. 2.The Graduate University for Advanced StudiesTokyoJapan
  3. 3.Japan Agency for Marin-Earth Science and TechnologyYokohamaJapan
  4. 4.Institute of Engineering InnovationThe University of TokyoTokyoJapan

Personalised recommendations