Climate Dynamics

, Volume 47, Issue 9–10, pp 2885–2899 | Cite as

The effect of future reduction in aerosol emissions on climate extremes in China

Article

Abstract

This study investigates the effect of reduced aerosol emissions on projected temperature and precipitation extremes in China during 2031–2050 and 2081–2100 relative to present-day conditions using the daily data output from the Community Earth System Model ensemble simulations under the Representative Concentration Pathway (RCP) 8.5 with an applied aerosol reduction and RCP8.5 with fixed 2005 aerosol emissions (RCP8.5_FixA) scenarios. The reduced aerosol emissions of RCP8.5 magnify the warming effect due to greenhouse gases (GHG) and lead to significant increases in temperature extremes, such as the maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), and tropical nights (TR), and precipitation extremes, such as the maximum 5-day precipitation amount, number of heavy precipitation days, and annual total precipitation from days ˃95th percentile, in China. The projected TXx, TNn, and TR averaged over China increase by 1.2 ± 0.2 °C (4.4 ± 0.2 °C), 1.3 ± 0.2 °C (4.8 ± 0.2 °C), and 8.2 ± 1.2 (30.9 ± 1.4) days, respectively, during 2031–2050 (2081–2100) under the RCP8.5_FixA scenario, whereas the corresponding values are 1.6 ± 0.1 °C (5.3 ± 0.2 °C), 1.8 ± 0.2 °C (5.6 ± 0.2 °C), and 11.9 ± 0.9 (38.4 ± 1.0) days under the RCP8.5 scenario. Nationally averaged increases in all of those extreme precipitation indices above due to the aerosol reduction account for more than 30 % of the extreme precipitation increases under the RCP8.5 scenario. Moreover, the aerosol reduction leads to decreases in frost days and consecutive dry days averaged over China. There are great regional differences in changes of climate extremes caused by the aerosol reduction. When normalized by global mean surface temperature changes, aerosols have larger effects on temperature and precipitation extremes over China than GHG.

Keywords

Aerosols RCP8.5 Climate extremes 

References

  1. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232. doi:10.1038/nature01092 CrossRefGoogle Scholar
  2. Bindoff NL, Stott PA, AchutaRao KM, Allen MR, Gillett N, Gutzler D, Hansingo K, Hegerl G, Hu Y, Jain S, Mokhov II, Overland J, Perlwitz J, Sebbari R, Zhang X (2013) Detection and attribution of climate change: from global to regional. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, chap 10. Cambridge University Press, CambridgeGoogle Scholar
  3. Boer GJ (1993) Climate change and the regulation of the surface moisture and energy budgets. Clim Dyn 8:225–239. doi:10.1007/BF00198617 CrossRefGoogle Scholar
  4. Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen VM, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh S, Sherwood S, Stevens B, Zhang X (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen S, Boschung J, Nauels A, Xia Y, Bex V, Midgley P (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change, chap 7. Cambridge Universtiy Press, CambridgeGoogle Scholar
  5. Caesar J, Lowe JA (2012) Comparing the impacts of mitigation versus non-intervention scenarios on future temperature and precipitation extremes in the HadGEM2 climate model. J Geophys Res. doi:10.1029/2012JD017762 Google Scholar
  6. Cassou C, Terray L, Phillips AS (2005) Tropical Atlantic influence on European heat waves. J Clim 18:2805–2811CrossRefGoogle Scholar
  7. Cofala J, Amann M, Klimont Z, Kupiainen K, Hölund-Isaksson L (2007) Scenarios of global anthropogenic emissions of air pollutants and methane until 2030. Atmos Environ 41:8486–8499CrossRefGoogle Scholar
  8. Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068 CrossRefGoogle Scholar
  9. Fischer EM, Beyerle U, Knutti R (2013) Robust spatially aggregated projections of climate extremes. Nat Clim Change 3:1033–1038. doi:10.1038/nclimate2051 CrossRefGoogle Scholar
  10. Gettelman A, Liu X, Ghan SJ, Morrison H, Park S, Conley AJ, Klein SA, Boyle J, Mitchell DL, Li J-LF (2010) Global simulations of ice nucleation and ice supersaturation with an improved cloud scheme in the community atmosphere model. J Geophys Res. doi:10.1029/2009JD013797 Google Scholar
  11. Ghan SJ, Liu X, Easter RC, Zaveri R, Rasch PJ, Yoon J-H, Eaton B (2012) Toward a minimal representation of aerosols in climate models: comparative decomposition of aerosol direct, semi-direct and indirect radiative forcing. J Clim 25:6461–6476. doi:10.1175/JCLI-D-11-00650.1 CrossRefGoogle Scholar
  12. Guo L, Highwood EJ, Shaffrey LC, Turner AG (2013) The effect of regional changes in anthropogenic aerosols on rainfall of the East Asian Summer Monsoon. Atmos Chem Phys 13:1521–1534. doi:10.5194/acp-13-1521-2013 CrossRefGoogle Scholar
  13. Haylock MR, Goodness CM (2004) Inter-annual variability of European extreme winter rainfall and links with mean large-scale circulation. Int J Climatol 24:759–776CrossRefGoogle Scholar
  14. Hurrell JW, Holland MM, Gent PR, Ghan S, Kay JE, Kushner PJ, Lamarque J-F, Large WG, Lawrence D, Lindsay K, Lipscomb WH, Long MC, Mahowald N, Marsh DR, Neale RB, Rasch P, Vavrus S, Vertenstein M, Bader D, Collins WD, Hack JJ, Kiehl J, Marshall S (2013) The Community Earth System model: a framework for collaborative research. Bull Am Meteorol Soc 94:1339–1360. doi:10.1175/BAMS-D-12-00121.1 CrossRefGoogle Scholar
  15. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  16. Ji Z, Kang S (2015) Evaluation of extreme climate events using a regional climate model for China. Int J Climatol 35:888–902CrossRefGoogle Scholar
  17. Jones GS, Stott PA, Christidis N (2008) Human contribution to rapidly increasing frequency of very warm Northern Hemisphere summers. J Geophys Res. doi:10.1029/2007JD008914 Google Scholar
  18. Kay JE, Deser C, Phillips A, Mai A, Hannay C, Strand G, Arblaster J, Bates S, Danabasoglu G, Edwards J, Holland M, Kushner P, Lamarque J-F, Lawrence D, Lindsay K, Middleton A, Munoz E, Neale R, Oleson K, Polvani L, Vertenstein M (2014) The Community Earth System Model (CESM1) large ensemble project: a community resource for studying climate change in the presence of internal climate variability. Bull Am Meteorol Soc 96:1333–1349. doi:10.1175/BAMS-D-13-00255.1 CrossRefGoogle Scholar
  19. Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim Change 119:345–357. doi:10.1007/s10584-013-0705-8 CrossRefGoogle Scholar
  20. Lin L, Gettelman A, Xu Y, Fu Q (2015) Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols. Clim Change (accepted)Google Scholar
  21. Liu X, Easter RC, Ghan SJ, Zaveri R, Rasch P, Shi X, Lamarque J-F, Gettelman A, Morrison H, Vitt F, Conley A, Park S, Neale R, Hannay C, Ekman AML, Hess P, Mahowald N, Collins W, Iacono MJ, Bretherton CS, Flanner MG, Mitchell D (2012) Towards a minimal representation of aerosol direct and indirect effects: model description and evaluation. Geosci Model Dev 5:709–735. doi:10.5194/gmd-4-709-2012 CrossRefGoogle Scholar
  22. Mascioli NR, Fiore AM, Previdi M, Correa G (2015) Temperature and precipitation extremes in the United States: quantifying the responses to anthropogenic aerosols and greenhouse gases. J Clim. doi: 10.1175/JCLI-D-15-0478.1
  23. Morak S, Hegerl GC, Christidis N (2012) Detectable changes in the frequency of temperature extremes. J Clim 26:1561–1574. doi:10.1175/JCLI-D-11-00678.1 CrossRefGoogle Scholar
  24. Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: description and numerical tests. J Clim 21(15):3642–3659CrossRefGoogle Scholar
  25. Moss RH et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756. doi:10.1038/nature08823 CrossRefGoogle Scholar
  26. Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  27. Riahi K, Gruebler A, Nakicenovic N (2007) Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol Forecast Soc Chang 74(7):887–935CrossRefGoogle Scholar
  28. Rotstayn LD, Collier MA, Chrastansky A, Jeffrey SJ, Luo J-J (2013) Projected effects of declining aerosols in RCP4.5: unmasking global warming? Atmos Chem Phys 13:10883–10905. doi:10.5194/acp-13-10883-2013 CrossRefGoogle Scholar
  29. Shindell D, Lamarque J-F, Unger N, Koch D, Faluvegi G, Bauer S, Ammann M, Cofala J, Teich H (2008) Climate forcing and air quality change due to regional emissions reductions by economic sector. Atmos Chem Phys 8:7101–7113. doi:10.5194/acp-8-7101-2008 CrossRefGoogle Scholar
  30. Sillmann J, Roeckner E (2008) Indices for extreme events in projections of anthropogenic climate change. Clim Change 86:83–104. doi:10.1007/s10584-007-9308-6 CrossRefGoogle Scholar
  31. Sillmann J, Kharin VV, Zwiers FW, Zhang X, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: part 2. Future climate projections. J Geophys Res 118:2473–2493. doi:10.1002/jgrd.50188 Google Scholar
  32. Sillmann J, Pozzoli L, Vignati E, Kloster S, Feichter J (2013b) Aerosol effect on climate extremes in Europe under different future scenarios. Geophys Res Lett 40:2290–2295. doi:10.1002/grl.50459 CrossRefGoogle Scholar
  33. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013c) Climate extremes indices in the CMIP5 multimodel ensemble: part 1. Model evaluation in the present climate. J Geophys Res 118:1716–1733. doi:10.1002/jgrd.50203 Google Scholar
  34. Stott PA, Jones GS, Christidis N, Zwiers FW, Hegerl G, Shiogama H (2011) Single-step attribution of increasing frequencies of very warm regional temperatures to human influence. Atmos Sci Lett 12(2):220–227. doi:10.1002/asl.315 CrossRefGoogle Scholar
  35. Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, Yin H, Ren G (2014) Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Change 4:1082–1085. doi:10.1038/nclimate2410 CrossRefGoogle Scholar
  36. Wang ZL, Zhang H, Zhang XY (2015a) Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect. Atmos Chem Phys 15:3671–3685. doi:10.5194/acp-15-3671-2015 CrossRefGoogle Scholar
  37. Wang ZL, Zhang H, Zhang XY (2015b) Projected response of East Asian summer monsoon system to future reductions in emissions of anthropogenic aerosols and their precursors. Clim Dyn. doi:10.1007/s00382-015-2912-7 Google Scholar
  38. Wen QH, Zhang X, Xu Y, Wang B (2013) Detecting human influence on extreme temperatures in China. Geophys Res Lett. doi:10.1002/grl.50285 Google Scholar
  39. Wu J, Gao XJ (2013) A gridded daily observation dataset over China region and comparison with the other datasets. Chin J Geophys 56:1102–1111Google Scholar
  40. Xu Y, Gao X, Shen Y, Xu C, Shi Y, Giorgi F (2009) A daily temperature dataset over China and its application in validating a RCM simulation. Adv Atmos Sci 26:763–772. doi:10.1007/s00376-009-9029-z CrossRefGoogle Scholar
  41. Xu Y, Lamarque J-F, Sanderson B (2015) The importance of aerosol scenarios in projections of future heat extremes. Clim Change. doi:10.1007/s10584-015-1565-1 Google Scholar
  42. You QL, Kang SC, Aguilar E, Pepin N, Flugel WA, Yan YP (2011) Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim Dyn 36:2399–2417CrossRefGoogle Scholar
  43. Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108. doi:10.1175/JCLI-3318.1 CrossRefGoogle Scholar
  44. Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2:851–870. doi:10.1002/wcc.147 CrossRefGoogle Scholar
  45. Zhang H, Wang ZL, Wang ZZ, Liu Q, Gong S, Zhang X-Y, Shen Z, Lu P, Wei X, Che H, Li L (2012) Simulation of direct radiative forcing of typical aerosols and their effects on global climate using an online AGCM-aerosol coupled model system. Clim Dyn 38:1675–1693CrossRefGoogle Scholar
  46. Zhou BT, Wen QH, Xu Y, Song L, Zhang X (2014) Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles. J Clim 27:6591–6611. doi:10.1175/JCLI-D-13-00761.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  2. 2.College of Atmospheric SciencesLanzhou UniversityLanzhouChina
  3. 3.Beijing Meteorological Observation CenterBeijingChina
  4. 4.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations