Climate Dynamics

, Volume 47, Issue 7–8, pp 2617–2634 | Cite as

Improved ENSO simulation from climate system model FGOALS-g1.0 to FGOALS-g2

  • Lin Chen
  • Yongqiang Yu
  • Weipeng ZhengEmail author


This study presents an overview of the improvement in the simulation of El Niño–Southern Oscillation (ENSO) in the latest generation of the Institute of Atmospheric Physics’ coupled general circulation model (CGCM), the Flexible Global Ocean–Atmosphere–Land System model Grid-point Version 2 (FGOALS-g2; hereafter referred to as “g2”) from its predecessor FGOALS-g1.0 (referred to as “g1”), including the more realistic amplitude, irregularity, and ENSO cycle. The changes have been analyzed quantitatively based on the Bjerknes stability index, which serves as a measure of ENSO growth rate. The improved simulation of ENSO amplitude is mainly due to the reasonable representation of the thermocline and thermodynamic feedbacks: On the one hand, the deeper mean thermocline results in a weakened thermocline response to the zonal wind stress anomaly, and the looser vertical stratification of mean temperature leads to a weakened response of anomalous subsurface temperature to anomalous thermocline depth, both of which cause the reduced thermocline feedback in g2; on the other hand, the alleviated cold bias of mean sea surface temperature leads to more reasonable thermodynamic feedback in g2. The regular oscillation of ENSO in g1 is associated with its unsuccessful representation of the role of atmospheric noise over the western–central equatorial Pacific (WCEP) in triggering ENSO events, which arises from the weak synoptic–intraseasonal variability of zonal winds over the WCEP in g1. The asymmetric transition of ENSO in g1 is attributed to the asymmetric effect of thermocline feedback, which is due to the annual cycle of mean upwelling in the eastern Pacific. This study highlights the great impact of improving the representation of mean states on the improved simulation of air–sea feedback processes and ultimately more reasonable depiction of ENSO behaviors in CGCMs.


ENSO Coupled general circulation model Air–sea interaction BJ-index Feedback 



The authors would like to thank F.-F. Jin and L.-J. Li for their helpful discussions on this work. This study was jointly supported by China National 973 Project 2015CB453200, the National Natural Science Foundation of China (Grant Nos. 41376002, 41530426 and 41475084), the National Basic Research Program of China (Grant No. 2013CB956204) and the “Strategic Priority Research Program—Climate Change: Carbon Budget and Relevant Issues” of the Chinese Academy of Sciences (Grant No. XDA05110302). We also acknowledge the LASG/IAP and Tsinghua University modeling groups, and the Program for Climate Model Diagnosis and Intercomparison (PCMDI). The model data can be obtained from and, respectively. This is IPRC contribution number 1168 and SOEST contirbution number 9570.


  1. AchutaRao K, Sperber KR (2006) ENSO simulation in coupled ocean–atmosphere models: Are the current models better? Clim Dyn 27:1–15CrossRefGoogle Scholar
  2. An S-I, Choi J (2013) Inverse relationship between the equatorial eastern Pacific annual-cycle and ENSO amplitudes in a coupled general circulation model. Clim Dyn 40:663–675CrossRefGoogle Scholar
  3. An S-I, Jin F-F (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412CrossRefGoogle Scholar
  4. An S-I, Kang I-S (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432CrossRefGoogle Scholar
  5. Bellenger H, Guilyardi E, Leloup J, Lengaigne M, Vialard J (2014) ENSO representation in climate models: from CMIP3 to CMIP5. Clim Dyn 42:1999–2008CrossRefGoogle Scholar
  6. Blanke B, Neelin JD, Gutzler D (1997) Estimating the effect of stochastic wind stress forcing on ENSO irregularity. J Clim 10:1473–1486CrossRefGoogle Scholar
  7. Bonan GB, Olson KW, Vertenstein M, Levis S, Zeng X, Dai Y, Dickinson RE, Yang Z-L (2002) The land surface climatology of the community land model coupled to the NCAR community climate model. J Clim 15:3123–3149CrossRefGoogle Scholar
  8. Briegleb BP, Hunke EC, Bitz CM, Lipscomb WH, Holland MM, Schramm JL, Moritz RE (2004) The sea ice simulation in the community climate system model, version two. NCAR Tech. Note NCAR/TN-455+STR, 34ppGoogle Scholar
  9. Canuto VM, Howard A, Cheng Y, Dubovikov MS (2001) Ocean turbulence. Part I: one-point closure model—momentum and heat vertical diffusivities. J Phys Oceanogr 31:1413–1426CrossRefGoogle Scholar
  10. Canuto VM, Howard A, Cheng Y, Dubovikov MS (2002) Ocean turbulence. Part II: vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J Phys Oceanogr 32:240–264CrossRefGoogle Scholar
  11. Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation. Mon Weather Rev 136:2999–3017CrossRefGoogle Scholar
  12. Chen L, Yu Y-Q (2014) Preliminary evaluations of ENSO-related cloud and water vapor feedbacks in FGOALS. In: Zhou T, Yu Y, Liu Y, Wang B (eds) Flexible global ocean–atmosphere–land system model. Springer earth system sciences. Springer, Berlin, pp 189–197. doi: 10.1007/978-3-642-41801-3_23
  13. Chen L, Yu Y-Q, Sun D-Z (2013) Cloud and water vapor feedbacks to the El Niño warming: Are they still biased in CMIP5 models? J Clim 26:4947–4961CrossRefGoogle Scholar
  14. Chen L, Li T, Yu Y-Q (2015a) Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J Clim 28:3250–3274CrossRefGoogle Scholar
  15. Chen D, Lian T, Fu C-B, Cane MA, Tang Y, Murtugudde R, Song X, Wu Q, Zhou L (2015b) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci 8:339–345CrossRefGoogle Scholar
  16. Choi K, Vecchi GA, Wittenberg AT (2013) ENSO transition, duration, and amplitude asymmetries: role of the nonlinear wind stress coupling in a conceptual model. J Clim 26:9462–9476CrossRefGoogle Scholar
  17. Chung P-H, Li T (2013) Interdecadal relationship between the mean state and El Niño types. J Clim 26:361–379CrossRefGoogle Scholar
  18. Collins WD et al (2006) The community climate system model: CCSM3. J Clim 19:2122–2143CrossRefGoogle Scholar
  19. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597CrossRefGoogle Scholar
  20. Delecluse P, Davey MK, Kitamura Y, Philander SGH, Suarez M, Bengtsson L (1998) Coupled general circulation modeling of the tropical Pacific. J Geophys Res 103:14 357–14 373CrossRefGoogle Scholar
  21. Deser C, Capotondi A, Saravanan R, Phillips AS (2006) Tropical Pacific and Atlantic climate variability in CCSM3. J Clim 19:2451–2481CrossRefGoogle Scholar
  22. Deser C et al (2012) ENSO and Pacific decadal variability in Community Climate System Model version 4. J Clim 25:2622–2651CrossRefGoogle Scholar
  23. Dickinson RE, Oleson KW, Bonan G, Hoffman F, Thornton P, Vertenstein M, Yang Z-L, Zeng XB (2006) The community land model and its climate statistics as a component of the community climate system model. J Clim 19:2302–2324CrossRefGoogle Scholar
  24. Duchon C (1979) Lanczos filtering in one and two dimensions. J Appl Meteorol 18:1016–1022CrossRefGoogle Scholar
  25. Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 288:1997–2002CrossRefGoogle Scholar
  26. Fedorov AV, Philander SG (2001) A stability analysis of tropical ocean–atmosphere interactions: bridging measurements and theory for El Niño. J Clim 14:3086–3101CrossRefGoogle Scholar
  27. Flügel M, Chang P (1996) Impact of dynamical and stochastic processes on the predictability of ENSO. Geophys Res Lett 23:2089–2092CrossRefGoogle Scholar
  28. Flügel M, Chang P, Penlend MC (2004) The role of stochastic forcing in modulating ENSO predictability. J Clim 17:3125–3140CrossRefGoogle Scholar
  29. Gent PR et al (2011) The community climate system model version 4. J Clim 24:4973–4991CrossRefGoogle Scholar
  30. Giese BS, Ray S (2011) El Niño variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. doi: 10.1029/2010JC006695 CrossRefGoogle Scholar
  31. Guilyardi E et al (2004) Representing El Niño in coupled ocean atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629CrossRefGoogle Scholar
  32. Guilyardi E, Wittenberg A, Fedorov A, Collins M, Wang C, Capotondi A, van Oldenborgh G, Stockdale T (2009) Understanding El Niño in ocean–atmosphere general circulation models: progress and challenges. Bull Am Meteorol Soc 90:325–340CrossRefGoogle Scholar
  33. Hendon HH, Wheeler MC, BMRC M, Zhang C (2005) Seasonal dependence of the MJO-El Niño relationship. J Clim 20:531–543CrossRefGoogle Scholar
  34. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi: 10.1029/2009GL040000 CrossRefGoogle Scholar
  35. Hunke EC, Lipscomb WH (2008) CICE: The Los Alamos sea ice model user’s manual, version 4. Los Alamos National Laboratory Tech. Rep. LA-CC-06-012, 76ppGoogle Scholar
  36. Jin F-F (1996) Tropical ocean–atmosphere interaction, the Pacific cold tongue, and the El Niño–Southern Oscillation. Science 274:76–78CrossRefGoogle Scholar
  37. Jin F-F, An S-I, Timmermann A, Zhao J (2003) Strong El Niño events and nonlinear dynamical heating. Geophys Res Lett 30:1120. doi: 10.1029/2002GL016356 CrossRefGoogle Scholar
  38. Jin F-F, Kim ST, Bejarano L (2006) A coupled-stability index for ENSO. Geophys Res Lett 33:L23708CrossRefGoogle Scholar
  39. Kapur A, Zhang C (2012) Multiplicative MJO forcing of ENSO. J Clim 25:8132–8147CrossRefGoogle Scholar
  40. Kessler WS (2002) Is ENSO a cycle or a series of events? Geophys Res Lett 29:2125. doi: 10.1029/2002GL015924 CrossRefGoogle Scholar
  41. Kim ST, Jin F-F (2011a) An ENSO stability analysis. Part I: results from a hybrid coupled model. Clim Dyn 36:1593–1607CrossRefGoogle Scholar
  42. Kim ST, Jin F-F (2011b) An ENSO stability analysis. Part II: results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim Dyn 36:1609–1627CrossRefGoogle Scholar
  43. Kim D, Kug J-S, Kang I-S, Jin F-F, Wittenberg AT (2008) Tropical Pacific impacts of convective momentum transport in the SNU coupled GCM. Clim Dyn 31:213–226. doi: 10.1007/s00382-007-0348-4 CrossRefGoogle Scholar
  44. Kim ST, Cai W, Jin F-F, Yu J-Y (2014) ENSO stability in coupled climate models and its association with mean state. Clim Dyn 42:3313–3321CrossRefGoogle Scholar
  45. Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822CrossRefGoogle Scholar
  46. Kleeman R, Moore AM (1997) A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J Atmos Sci 54:753–767CrossRefGoogle Scholar
  47. Kleeman R, Tang Y, Moore AM (2003) The calculation of climatically relevant singular vectors in the presence of weather noise as applied to the ENSO problem. J Atmos Sci 60:2856–2868CrossRefGoogle Scholar
  48. Knutson TR, Manabe S, Gu D (1997) Simulated ENSO in a global coupled ocean–atmosphere model: multidecadal amplitude modulation and CO2 sensitivity. J Clim 10:131–161CrossRefGoogle Scholar
  49. Larkin NK, Harrison DE (2002) ENSO warm (El Niño) and cold (La Niña) event life cycles: ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Clim 15:1118–1140CrossRefGoogle Scholar
  50. Latif M, Sterl A, Majer-Reimer E, Junge WM (1993) Climate variability in a coupled GCM. Part I: the tropical Pacific. J Clim 6:5–21CrossRefGoogle Scholar
  51. Latif M et al (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103:14 375–14 393CrossRefGoogle Scholar
  52. Latif M, Sperber K, Participants CMIP (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18:255–276CrossRefGoogle Scholar
  53. Li C (1989) Frequent activities of stronger aerotroughs in East Asia in wintertime and the occurrence of the El Niño event. Sci China (B) 32:976–985Google Scholar
  54. Li T (1997) Phase transition of the El Niño–Southern Oscillation: a stationary SST mode. J Atmos Sci 54:2872–2887CrossRefGoogle Scholar
  55. Li L, Hogan TF (1999) The role of the annual-mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. J Clim 12:780–792CrossRefGoogle Scholar
  56. Li L et al (2013a) The flexible global ocean–atmosphere–land system model: grid-point version 2: FGOALS-g2. Adv Atmos Sci 30:543–560CrossRefGoogle Scholar
  57. Li L et al (2013b) Evaluation of grid-point atmospheric model of IAP LASG version 2 (GAMIL2). Adv Atmos Sci 30:855–867CrossRefGoogle Scholar
  58. Li L, Wang B, Zhang GJ (2014) The role of nonconvective condensation processes in response of surface shortwave cloud radiative forcing to El Niño warming. J Clim 27:6721–6736CrossRefGoogle Scholar
  59. Liu HL, Yu YQ, Li W, Zhang XH (2004) Manual for LASG/IAP climate system ocean model (LICOM1.0). Science Press, Beijing, pp 1–128 (in Chinese) Google Scholar
  60. Liu HL, Lin PF, Yu YQ, Zhang XH (2012) The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2.0. Acta Meteorol Sin 26:318–329CrossRefGoogle Scholar
  61. Lloyd J, Guilyardi E, Weller H (2012) The role of atmosphere feedbacks during ENSO in the CMIP3 models. Part III: the shortwave flux feedback. J Clim 25:4275–4293CrossRefGoogle Scholar
  62. Luan Y, Braconnot P, Yu Y, Zheng W, Marti O (2012) Early and mid-Holocene climate in the tropical Pacific: seasonal cycle and interannual variability induced by insolation. Clim Past 8:1093–1108CrossRefGoogle Scholar
  63. Lübbecke JF, McPhaden MJ (2014) Assessing the 21st century shift in ENSO variability in terms of the Bjerknes stability index. J Clim 27:2577–2587CrossRefGoogle Scholar
  64. Macmynowski DG, Tziperman E (2008) Factors affecting ENSO’s period. J Atmos Sci 65:1570–1586CrossRefGoogle Scholar
  65. McPhaden MJ, Zebiak SE, Glantz MH (2006) ENSO as an integrating concept in Earth science. Science 314:1740–1745CrossRefGoogle Scholar
  66. McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi: 10.1029/2011GL048275 CrossRefGoogle Scholar
  67. Meehl GA, Gent P, Arblaster JM, Otto-Bliesner B, Brady E, Craig A (2001) Factors that affect amplitude of El Niño in global coupled climate models. Clim Dyn 17:515–526CrossRefGoogle Scholar
  68. Moore AM, Kleeman R (1999a) Stochastic forcing of ENSO by the intraseasonal oscillation. J Clim 12:1199–1220CrossRefGoogle Scholar
  69. Moore AM, Kleeman R (1999b) The nonnormal nature of El Niño and intraseasonal variability. J Clim 12:2965–2982CrossRefGoogle Scholar
  70. Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: description and numerical tests. J Clim 21:3642–3659CrossRefGoogle Scholar
  71. Neale RB, Richter JH, Jochum M (2008) The impact of convection of ENSO: from a delayed oscillator to a series of events. J Clim 21:5904–5924CrossRefGoogle Scholar
  72. Neelin JD (1991) The slow sea surface temperature mode and the fast-wave limit: analytic theory for tropical interannual oscillations and experiments in a hybrid coupled model. J Atmos Sci 48:584–606CrossRefGoogle Scholar
  73. Ohba M, Ueda H (2009) Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J Clim 22:177–192CrossRefGoogle Scholar
  74. Ohlmann JC (2003) Ocean radiant heating in climate models. J Clim 16:1337–1351CrossRefGoogle Scholar
  75. Okumura YM, Deser C (2010) Asymmetry in the duration of El Niño and La Niña. J Clim 23:5826–5843CrossRefGoogle Scholar
  76. Okumura YM, Ohba M, Deser C (2011) A proposed mechanism for asymmetric duration of El Niño and La Niña. J Clim 24:3822–3829CrossRefGoogle Scholar
  77. Oleson KW et al (2004) Technical description of the community land model (CLM). Tech. Rep. NCAR/TN-461+STR, National Center for Atmospheric Research, Boulder, CO, 174ppGoogle Scholar
  78. Pacanowski R, Philander S (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11:1443–1451CrossRefGoogle Scholar
  79. Paulson CA, Simpson JJ (1977) Irradiance measurements in the upper ocean. J Phys Oceanogr 7:952–956CrossRefGoogle Scholar
  80. Penland C (1996) A stochastic model of IndoPacific sea surface temperature anomalies. Phys D 98:534–558CrossRefGoogle Scholar
  81. Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024CrossRefGoogle Scholar
  82. Philander SG (1990) El Niño, La Niña, and the Southern Oscillation. Academic Press, LondonGoogle Scholar
  83. Rasch PJ, Kristjánsson JE (1998) A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J Clim 11:1587–1614CrossRefGoogle Scholar
  84. Rasmusson E, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation–El Niño. Mon Weather Rev 110:354–384CrossRefGoogle Scholar
  85. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  86. Richter JH, Rasch PJ (2008) Effects of convective momentum transport on the atmospheric circulation in the Community Atmosphere Model, version 3 (CAM3). J Clim 21:1487–1499CrossRefGoogle Scholar
  87. Schneider EK (2002) Understanding differences between the equatorial Pacific as simulated by two coupled GCMs. J Clim 15:449–469CrossRefGoogle Scholar
  88. Seiki A, Takayabu YN (2007) Westerly wind bursts and their relationship with intraseasonal variations and ENSO. Part I: statistics. Mon Weather Rev 135:3325–3345CrossRefGoogle Scholar
  89. Su J, Zhang R, Li T, Rong X, Kug J, Hong C-C (2010) Causes of the El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23:605–617CrossRefGoogle Scholar
  90. Sun F, Yu J-Y (2009) A 10–15-yr modulation cycle of ENSO intensity. J Clim 22:1718–1735CrossRefGoogle Scholar
  91. Sun D-Z, Yu Y, Zhang T (2009) Tropical water vapor and cloud feedbacks in climate models: a further assessment using coupled simulations. J Clim 22:1287–1304CrossRefGoogle Scholar
  92. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  93. Thompson CJ, Battisti DS (2001) A linear stochastic dynamical model of ENSO. Part II: analysis. J Clim 14:445–466CrossRefGoogle Scholar
  94. Trenberth K et al (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103:14 291–14 324CrossRefGoogle Scholar
  95. Uppala SM et al (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012CrossRefGoogle Scholar
  96. Vecchi G, Harrison DE (2000) Tropical Pacific sea surface temperature anomalies, El Niño, and equatorial westerly wind events. J Clim 13:1814–1830CrossRefGoogle Scholar
  97. Wallace JM et al (1998) On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J Geophys Res 103:14241–14259CrossRefGoogle Scholar
  98. Wang B, An S-I (2002) A mechanism for decadal changes of ENSO behavior: roles of background wind changes. Clim Dyn 18:475–486CrossRefGoogle Scholar
  99. Wang C, Picaut J (2004) Understanding ENSO physics—a review. In: Earth climate: the ocean–atmosphere interaction, geophys. monogr., vol 147. Amer. Geophys. Union, pp 21–48Google Scholar
  100. Wang L, Zhou T (2012) Assessing the quality of regional ocean reanalysis data from ENSO signals. Atmos Ocean Sci Lett 5:55–61CrossRefGoogle Scholar
  101. Wang B, Wan H, Ji ZZ, Zhang XH, Yu RCYYQ, Liu HL (2004) Design of a new dynamical core for global atmospheric models based on some efficient numerical methods. Sci China 47:4–21CrossRefGoogle Scholar
  102. Wang L, Zhou T, Liu H, Zou L (2011) Comparison of two thermal forcing schemes in a global ocean model over tropical Pacific Ocean. Acta Oceanol Sin 33(4):9–18 (in Chinese) Google Scholar
  103. Xie X, Wang B, Li LJ, Dong L (2012) MJO simulations by GAMIL1.0 and GAMIL2.0. Atmos Ocean Sci Lett 5:48–54Google Scholar
  104. Xu K-M, Krueger SK (1991) Evaluation of cloud models using a cumulus ensemble model. Mon Weather Rev 119:342–367CrossRefGoogle Scholar
  105. Yu Y-Q, Zhang X, Guo Y (2004) Global coupled ocean–atmosphere general circulation models in LASG/IAP. Adv Atmos Sci 21:444–455CrossRefGoogle Scholar
  106. Yu Y-Q et al (2008) Coupled model simulations of climate changes in the 20th century and beyond. Adv Atmos Sci 25:641–654CrossRefGoogle Scholar
  107. Yu Y-Q, Zheng WP, Wang B, Liu H, Liu J (2011) Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean–atmosphere–land system model. Adv Atmos Sci 28:99–117CrossRefGoogle Scholar
  108. Yu Y-Q, He J, Zheng WP, Luan YH (2013) Annual cycle and interannual variability in the tropical pacific as simulated by three versions of FGOALS. Adv Atmos Sci 30:621–637CrossRefGoogle Scholar
  109. Yu Y-Q, Chen L, Zhang Y (2014) ENSO and PDO in two versions of FGOALS. In: Zhou T, Yu Y, Liu Y, Wang B (eds) Flexible global ocean–atmosphere–land system model. Springer earth system sciences. Springer, Berlin, pp 107–113. doi: 10.1007/978-3-642-41801-3_14
  110. Zavala-Garay J, Moore AM, Perez L (2003) The response of a coupled model of ENSO to observed estimates of stochasting forcing. J Clim 16:2827–2842CrossRefGoogle Scholar
  111. Zavala-Garay J, Moore AM, Kleeman R (2004) Influence of stochastic forcing on ENSO prediction. J Geophys Res 109:C11007. doi: 10.1029/2004JC002406 CrossRefGoogle Scholar
  112. Zavala-Garay J, Zhang C, Moore AM, Kleeman R (2005) The linear response of ENSO to the Madden–Julian Oscillation. J Clim 18:2441–2459CrossRefGoogle Scholar
  113. Zavala-Garay J, Zhang C, Moore AM, Wittenberg AT, Harrison MJ, Rosati A, Vialard J, Kleeman R (2008) Sensitivity of hybrid ENSO models to unresolved atmospheric variability. J Clim 21:3704–3721CrossRefGoogle Scholar
  114. Zebiak SE, Cane MA (1987) A model for El Niño-Southern Oscillation. Mon Weather Rev 115:2262–2278CrossRefGoogle Scholar
  115. Zhang W, Jin F-F (2012) Improvements in the CMIP5 simulations of ENSO-SSTA meridional width. Geophys Res Lett. doi: 10.1029/2012GL053588 Google Scholar
  116. Zhang GJ, McFarlane NA (1995) Sensitivity of climate simulations to the parameterization of cumulus convection in the Canadian Climate Centre general circulation model. Atmos Ocean 33:407–446CrossRefGoogle Scholar
  117. Zhang GJ, Mu M (2005) Effects of modifications to the Zhang–McFarlane convection parameterization on the simulation of the tropical precipitation in the national center for atmospheric research com munity climate model. version 3. J Geophys Res 110:D09109. doi: 10.1029/2004JD005617 Google Scholar
  118. Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi: 10.1029/2003JD004457 CrossRefGoogle Scholar
  119. Zhang W, Jin F-F, Zhao J-X, Li J (2013) On the bias in simulated ENSO SSTA meridional widths of CMIP3 models. J Clim 26:3173–3186CrossRefGoogle Scholar
  120. Zheng WP, Yu Y-Q (2007) ENSO phase-locking in an ocean–atmosphere coupled model FGCM-1.0. Adv Atmos Sci 24:833–844CrossRefGoogle Scholar
  121. Zheng WP, Braconnot P, Guilyardi E, Merkel U, Yu Y (2008) ENSO at 6 ka and 21 ka from ocean–atmosphere coupled model simulations. Clim Dyn 30:745–762CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LASG, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.International Pacific Research Center, and School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations