Climate Dynamics

, Volume 51, Issue 3, pp 985–1003 | Cite as

Control of radiation and evaporation on temperature variability in a WRF regional climate simulation: comparison with colocated long term ground based observations near Paris

  • S. BastinEmail author
  • M. Chiriaco
  • P. Drobinski


The objective of this paper is to understand how large-scale processes, cloud cover and surface fluxes affect the temperature variability over the SIRTA site, near Paris, and in a regional climate simulation performed in the frame of HyMeX/Med-CORDEX programs. This site is located in a climatic transitional area where models usually show strong dispersions despite the significant influence of large scale on interannual variability due to its western location. At seasonal time scale, the temperature is mainly controlled by surface fluxes. In the model, the transition from radiation to soil moisture limited regime occurs earlier than in observations leading to an overestimate of summertime temperature. An overestimate of shortwave radiation (SW), consistent with a lack of low clouds, enhances the soil dryness. A simulation with a wet soil is used to better analyse the relationship between dry soil and clouds but while the wetter soil leads to colder temperature, the cloud cover during daytime is not increased due to the atmospheric stability. At shorter time scales, the control of surface radiation becomes higher. In the simulation, higher temperatures are associated with higher SW. A wet soil mitigates the effect of radiation due to modulation by evaporation. In observations, the variability of clouds and their effect on SW is stronger leading to a nearly constant mean SW when sorted by temperature quantile but a stronger impact of cloud cover on day-to-day temperature variability. Impact of cloud albedo effect on precipitation is also compared.


Hymex CORDEX Temperature variability SIRTA-ReOBS Surface and radiative fluxes Lidar simulator Cloud radiative effects Land surface–atmosphere interactions 



This work is a contribution to the HyMeX program (HYdrological cycle in The Mediterranean EXperiment) through INSU-MISTRALS support and the MEDCORDEX program (COordinated Regional climate Downscaling EXperiment—Mediterranean region). This research has received funding from the French National Research Agency (ANR) project REMEMBER (grant ANR-12-SENV-001) and is a contribution to the EECLAT project through LEFE/INSU and TOSCA/CNES supports. It was supported by the IPSL group for regional climate and environmental studies, with granted access to the HPC resources of GENCI/IDRIS (under allocation i2011010227). The SIRTA-ReOBS effort also benefited from the support of the L-IPSL funded by ANR under the “Programme d’Investissements d’Avenir (Grant ANR-10-LABX-0018) and by the EUCLIPSE project funded by the European Commission under the Seventh Framework Program (Grant no 244067). We would like to acknowledge the SIRTA and Climserv teams at IPSL for collecting and providing data and computing ressources; Cindy Lebeaupin-Brossier and Marc Stefanon for providing simulation outputs; the CNES (Centre National d’Etudes Spatiales) for partially funded M. Chiriaco research.


  1. Alapaty K, Herwehe JA, Otte TL, Nolte CG, Bullock OR, Mallard MS, Kain JS, Dudhia J (2012) Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys Res Lett. doi: 10.1029/2012GL054031. ISSN: 0094-8276
  2. Betts AK (2007) Coupling of water vapor convergence, clouds, precipitation, and land-surface processes. J Geophys Res 112:D10108. doi: 10.1029/2006JD008191 CrossRefGoogle Scholar
  3. Betts AK (2009) Land surface atmosphere coupling in observations and models. J Adv Model Earth Syst. doi: 10.3894/JAMES.2009.1.4
  4. Betts AK, Ball J, Barr A, Black TA, McCaughey JH, Viterbo P (2006) Assessing land-surface-atmosphere coupling in the ERA-40 reanalysis with boreal forest data. Agr Forest Meteorol 140:355–382. doi: 10.1016/j.agrformet.2006.08.009 CrossRefGoogle Scholar
  5. Betts AK, Desjardins R, Worth D, Beckage B (2014) Climate coupling between temperature, humidity, precipitation and cloud cover over the Canadian Prairies. J Geophys Res Atmos 119:13305–13326. doi: 10.1002/2014JD022511 CrossRefGoogle Scholar
  6. Betts AK, Desjardins R, Beljaars ACM, Tawfik A (2015) Observational study of land-surface-cloud-atmosphere coupling on daily timescales. Front Earth Sci 3:13. doi: 10.3389/feart.2015.00013 CrossRefGoogle Scholar
  7. Boé J (2013) Modulation of soil moisture–precipitation interactions over France by large scale circulation. Clim Dyn 40(3–4):875–892CrossRefGoogle Scholar
  8. Boé J, Terray L (2014) Land–sea contrast, soil-atmosphere and cloud-temperature interactions: interplays and roles in future summer European climate change. Clim Dyn 42:683–699. doi: 10.1007/s00382-013-1868-8 CrossRefGoogle Scholar
  9. Bullock OR Jr, Alapaty K, Herwehe JA, Mallard MS, Otte TL, Gilliam RC, Nolte CG (2014) An observation-based investigation of nudging in WRF for downscaling surface climate information to 12-km grid spacing. J Appl Meteor Climatol 53:20–33CrossRefGoogle Scholar
  10. Cattiaux J, Yiou P (2012) Contribution of atmospheric circulation to remarkable European temperatures of 2011, in «Explaining Extreme Events of 2011 from a Climate Perspective». Bull Am Meteorol Soc 93:1041–1067. doi: 10.1175/BAMSD-12-00021.1 CrossRefGoogle Scholar
  11. Chakroun M, Bastin S, Chiriaco M, Chepfer H (2016) Characterization of vertical cloud variability over Europe using spatial lidar observations and regional simulation. Clim Dyn. doi: 10.1007/s00382-016-3037-3
  12. Champollion C, Drobinski P, Haeffelin M, Bock O, Tarniewicz J, Bouin MN, Vautard R (2009) Water vapor variability induced by urban/rural heterogeneities during convective conditions. Quart J R Meteorol Soc 135:1266–1276CrossRefGoogle Scholar
  13. Chen C-T, Knuston T (2008) On the verification and comparison of extreme rainfall indices from climate models. J Clim 21:1605–1621CrossRefGoogle Scholar
  14. Chepfer H, Bony S, Winker DM, Chiriaco M, Dufresne J-L, Seze G (2008) Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 35:L20804. doi: 10.1029/2012GL053385 CrossRefGoogle Scholar
  15. Chepfer H, Bony S, Winker DM, Cesana G, Dufresne JL, Minnis P, Stubenrauch CJ, Zeng S (2010) The GCM oriented CALIPSO cloud product (CALIPSO-GOCCP). J Geophys Res 105:D00H16. doi: 10.1029/2009JD012251 Google Scholar
  16. Chepfer H, Cesana G, Winker D, Getzewich B, Vaughan M, Liu Z (2013) Comparison of two different cloud climatologies derived from CALIOP-attenuated backscattered measurements (level 1): the CALIPSO-ST and the CALIPSO-GOCCP. Am Meteorol Soc 30:725–744. doi: 10.1175/JTECH-D-12-00057.1 Google Scholar
  17. Cheruy F, Campoy A, Dupont J-C, Ducharne A, Hourdin F, Haeffelin M, Chiriaco M, Idelkadi A (2013) Combined influence of atmospheric physics and soil hydrology on the simulated meteorology at the SIRTA atmospheric observatory. Clim Dyn 40:2251–2269. doi: 10.1007/s00382-012-1469-y CrossRefGoogle Scholar
  18. Cheruy F, Dufresne JL, Hourdin F, Ducharne A (2014) Role of clouds and land-atmosphere coupling in midlatitude continental summer warm biases and climate change amplification in CMIP5 simulations. Geophys Res Lett 41:6493–6500CrossRefGoogle Scholar
  19. Chiriaco M, Vautard R, Chepfer H, Haeffelin M, Dudhia J, Wanherdrick Y, Morille Y, Protat A (2006) The ability of MM5 to simulate ice clouds: systematic comparison between simulated and measured fluxes and lidar/radar profiles at the SIRTA atmospheric observatory. Am Meteorol Soc 134:897–918Google Scholar
  20. Chiriaco M, Bastin S, Yiou P, Haeffelin M, Dupont J-C, Stéfanon M (2014) European heatwave in July 2006: observations and modeling showing how local processes amplify conducive large-scale conditions. Geo Res Lett 41:5644–5652. doi: 10.1002/2014GL060205 CrossRefGoogle Scholar
  21. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Waner H (2007) Summer heat waves over western Europe 1880–2003, their relationship to large-scale forcings and predictability. Clim Dyn 29:251–275CrossRefGoogle Scholar
  22. Drobinski P, Ducrocq V, Alpert P, Anagnostou E, Béranger K, Borga M, Braud I, Chanzy A, Davolio S, Delrieu G, Estournel C, Filali Boubrahmi N, Font J, Grubišić V, Gualdi S, Homar V, Ivančan-Picek B, Kottmeier C, Kotroni V, Lagouvardos K, Lionello P, Llasat MC, Ludwig W, Lutoff C, Mariotti A, Richard E, Romero R, Rotunno R, Roussot O, Ruin I, Somot S, Taupier-Letage I, Tintore J, Uijlenhoet R, Wernli H (2014) HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull Am Meteorol Soc 95:1063–1082. doi: 10.1175/BAMS-D-12-00242.1 CrossRefGoogle Scholar
  23. Dudhia J (1989) Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J Atmos Sci 46:3077–3107. doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 CrossRefGoogle Scholar
  24. Fink AH et al (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216CrossRefGoogle Scholar
  25. Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3(6):398–403CrossRefGoogle Scholar
  26. Fischer EM, Rajczak J, Schär C (2012) Changes in European summer temperature variability revisited. Geophys Res Lett 39:L19702Google Scholar
  27. Gao X, Pal JS, Giorgi F (2006) Projected changes in mean and extreme precipitation over the Mediterranean region from high resolution double nested RCM simulation. Geophys Res Lett 33:L03706CrossRefGoogle Scholar
  28. García-Díez M, Fernández J, Fita L, Yagüe C (2013) Seasonal dependence of WRF model biases and sensitivity to PBL schemes over Europe. Quart J R Meteor Soc 139(671):501–514CrossRefGoogle Scholar
  29. Gentine P, Holtslag AAM, D’Andrea F, Ek M (2013) Surface and atmospheric controls on the onset of moist convection over land. J Hydrometeorol. doi:10.1175/JHM-D-12-0137.1Google Scholar
  30. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. doi: 10.1029/2006GL025734 CrossRefGoogle Scholar
  31. Giorgi F, Jones C, Asrar RG (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58(3):183Google Scholar
  32. Güttler I, Branković Č, O’Brien TA, Coppola E, Grisogono B, Giorgi F (2014) Sensitivity of the regional climate model RegCM4.2 to planetary boundary layer parameterisation. Clim Dyn 43(7):1753–1772CrossRefGoogle Scholar
  33. Haeffelin M, Barthes L, Bock O, Boitel C, Bony S, Bouniol D, Chepfer H, Chiriaco M, Cuesta J, Delanӧe J, Drobinski P, Dufresne J-L, Flamant C, Grall M, Hodzic A, Hourdin F, Lapouge F, Lemaitre Y, Mathieu A, Morille Y, Naud C, Nӧel V, OHirok B, Pelon J, Pietras C, Protat A, Romand B, Scialom G, Vautard R (2005) SIRTA, a ground-based atmospheric observatory for cloud and aerosol research. Annales Geophysicae 23:253–275CrossRefGoogle Scholar
  34. Hawkins E, Stutton R (2009) The potential to narrow uncertainty in regional climate predictions. Am Meteorol Soc 90:1095–1107Google Scholar
  35. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:D20119CrossRefGoogle Scholar
  36. Herwehe JA, Alapaty K, Spero TL, Nolte CG (2014) Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud–radiation interactions. J Geophys Res Atmos 119:5317–5330. doi: 10.1002/2014JD021504 CrossRefGoogle Scholar
  37. Hong SY, Dudhia J, Chen SH (2004) A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon Weather Rev 132:103–120CrossRefGoogle Scholar
  38. Huffman George J, Adler Robert F, Arkin Philip, Chang Alfred, Ferraro Ralph, Gruber Arnold, Janowiak John, McNab Alan, Rudolf Bruno, Schneider Udo (1997) The global precipitation climatology project (GPCP) combined precipitation dataset. Bull Am Meteorol Soc 78(1):5–20CrossRefGoogle Scholar
  39. Ionita M, Lohmann G, Rimbu N, Scholz P (2012a) Dominant modes of diurnal temperature range variability over Europe and their relationships with large-scale atmospheric circulation and sea surface temperature anomaly patterns. J Geophys Res. doi: 10.1029/2011JD01666 Google Scholar
  40. Ionita M, Lohmann G, Rimbu N, Chelcea S, Dima M (2012b) Inter-annual to decadal summer drought variability over Europe and its relationship to global sea surface temperature. Clim Dyn 38(1–2):363–377CrossRefGoogle Scholar
  41. Ionita M, Boroneant C, Chelcea S (2015) Seasonal modes of dryness and wetness variability over Europe and their connections with large-scale atmospheric circulation and global sea surface temperature. Clim Dyn. doi: 10.1007/s00382-015-2508-2
  42. Jousse A, Hall A, Sun F, Teixeira J (2015) Causes of WRF surface energy fluxes biases in a stratocumuls region. Clim Dyn. doi: 10.1007/s00382-015-2599-9
  43. Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  44. Katragkou E et al (2015) Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci Model Dev 8:603–618CrossRefGoogle Scholar
  45. Lenderink G, van Ulden A, van den Hurk B, van Meijgaard E (2007) Summertime inter-annual temperature variability in an ensemble of regional model simulations: analysis of the surface energy budget. Clim Change 81(1):233–274. doi: 10.1007/s10584-006-9229-9 CrossRefGoogle Scholar
  46. Menut L (2003) Adjoint modelling for atmospheric pollution processes sensitivity at regional scale during the ESQUIF IOP2. J Geophys Res Atmos 108:D17CrossRefGoogle Scholar
  47. Miralles DG, Teuling AJ, van Heerwaarden CC, de Arellano JV-G (2014) Mega-heatwave temperatures due to combined soil desiccation and atmospheric heat accumulation. Nat Geosci 7:345–349CrossRefGoogle Scholar
  48. Mlawer JE, Taubma JS, Brown DP, Iancono MJ, Clough AS (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102(D14):16663–16682. doi: 10.1029/97JD00237 CrossRefGoogle Scholar
  49. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr Akad Nauk SSSR Geophiz Inst 24(151):163–187Google Scholar
  50. Nogaj M, Yiou P, Parey S, Malek F, Naveau P (2006) Amplitude and frequency of temperature extremes over the North Atlantic region. Geophys Res Lett 33(10):L10801. doi: 10.1029/2005GL024251 CrossRefGoogle Scholar
  51. Noh Y, Cheon WG, Hong SY (2003) Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound-Layer Meteorol 107:401–427CrossRefGoogle Scholar
  52. Omrani H, Drobinski P, Dubos T (2013) Optimal nudging strategies in regional climate modelling: Investigation in a Big-Brother experiment over the European and Mediterranean regions. Clim Dyn 41:2451–2470CrossRefGoogle Scholar
  53. Omrani H, Drobinski P, Dubos T (2015) Using nudging to improve global-regional dynamic consistency in limited-area climate modeling: What should we nudge? Clim Dyn 44:1627–1644CrossRefGoogle Scholar
  54. Otte TL, Nolte CG, Otte MJ, Bowden JH (2012) Does nudging squelch the extremes in regional climate modeling? J Clim 25:7046–7066CrossRefGoogle Scholar
  55. Ruti P, Somot S, et al (2016) Med-CORDEX initiative for Mediterranean climate studies. Bul Amer Met Soc. doi: 10.1175/BAMS-D-14-00176.1
  56. Salameh T, Drobinski P, Dubos T (2010) The effect of indiscriminate nudging time on large and small scales in regional climate modelling: application to the Mediterranean basin. Q J R Meteorol Soc 136:170–182. doi: 10.1002/qj.518 CrossRefGoogle Scholar
  57. Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger M, Appenzeller C (2004) The role of increasing temperature variability in European summer heat waves. Nature 427:332–336CrossRefGoogle Scholar
  58. Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci Rev 99(3–4)125–161. doi: 10.1016/j.earscirev.2010.02.004 CrossRefGoogle Scholar
  59. Simmons AJ, Uppala SM, Dee DP, Kobayashi S (2007) ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter 110:25–35Google Scholar
  60. Smirnova TG, Brown JM, Stanley G (1997) Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon Weather Rev 125:1870–1884. doi: 10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2 CrossRefGoogle Scholar
  61. Smirnova TG, Brown JM, Benjamin SG, Kim D (2000) Parameterization of cold-season processes in the MAPS land-surface scheme. J Geophys Res 105(D3):4077–4086. doi: 10.1029/1999JD901047 CrossRefGoogle Scholar
  62. Stefanon M, Drobinski P, D’Andrea F, Lebeaupin-Brossier C, Bastin S (2014) Soil moisture–temperature feedbacks at meso-scale during summer heat waves over western Europe. Clim Dyn 42(5–6):1309–1324. doi: 10.1007/s00382-013-1794-9 CrossRefGoogle Scholar
  63. Stegehuis A, Teuling R, Ciais P, Vautard R, Jung M (2013a) Future European temperature change uncertainties reduced by using land heat flux observations. Geophys Res Lett 40(10):2242–2245. doi: 10.1002/grl.50404 CrossRefGoogle Scholar
  64. Stegehuis A, Vautard R, Ciais P, Teuling R, Jung M, Yiou P (2013b) Summer temperatures in Europe and land heat fluxes in observation-based data and regional climate model simulations. Clim Dyn 41:455–477CrossRefGoogle Scholar
  65. Tang Q, Leng G, Groisman PY (2012) European hot summers associated with a reduction of cloudiness. J Clim 25:3637–3644. doi: 10.1175/JCLI-D-12-00040.1 CrossRefGoogle Scholar
  66. Teuling AJ et al (2009) A regional perspective on trends in continental evaporation. Geophys Res Lett 36:L02404. doi: 10.1029/2008GL036584 CrossRefGoogle Scholar
  67. Van den Hurk B, Doblas-Reyes F, Balsamo G, Koster RD, Camargo Seneviratne SI, Jr H (2012) Soil moisture effects on seasonal temperature and precipitation forecast scores in Europe. Clim Dyn 38:349–362CrossRefGoogle Scholar
  68. Vautard R, Yiou P (2009) Control of recent European surface climate change by atmospheric flow. Geophys Res Lett 36:L22702. doi: 10.1029/2009GL040480 CrossRefGoogle Scholar
  69. Vautard R et al (2007) Summertime European heat and drought waves induced by wintertime mediterranean rainfall deficit. Geophys Res Lett 34:L07711CrossRefGoogle Scholar
  70. Vautard R, Moran MD, Solazzo E, Gilliam RC, Matthias V, Bianconi R, Chemel C, Ferreira J, Geyer B, Hansen AB, Jericevic A, Prank M, Segers A, Silver JD, Werhahn J, Wolke R, Rao ST, Galmarini S (2012) Evaluation of the meteorological forcing used for the air quality model evaluation international initiative (AQMEII) air quality simulations. Atmos Environ. doi: 10.1016/j.atmosenv.2011.10.065.
  71. Vautard R, Gobiet A, Jacob D, Belda M, Colette A, Déqué M, Fernández J, García-Díez M, Goergen K, Güttler I, Halenka T, Karakostas T, Katragkou E, Keuler K, Kotlarski S, Mayer S, van Meijgaard E, Nikulin G, Patarčić M, Scinocca J, Sobolowski S, Suklitsch M, Teichmann C, Warrach-Sagi K, Wulfmeyer V, Yiou P (2012b) The simulation of European heat waves from an ensemble of 1 regional climate models within the EURO-CORDEX project. Clim Dyn 41:2555–2575CrossRefGoogle Scholar
  72. Vidale PL, Lüthi D, Wegmann R, Schär C (2007) European summer climate variability in a heterogeneous multi-model ensemble. Clim Change 81:209–232. doi: 10.1007/s10584-006-9218-z CrossRefGoogle Scholar
  73. Xoplaki E, Gonzalez-Rouco JF, Luterbacher J, Wanner H (2004) Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends. Clim Dyn 23:63–78. doi: 10.1007/s00382-004-0422-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC Univ. Paris 06CNRSGuyancourtFrance
  2. 2.Laboratoire de Météorologie Dynamique, Ecole Polytechnique, Sorbonne Universités, CNRS/INSUUPMC Univ. Paris 0691128France

Personalised recommendations