Skip to main content
Log in

Mesoscale SST–wind stress coupling in the Peru–Chile current system: Which mechanisms drive its seasonal variability?

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Satellite observations and a high-resolution regional ocean–atmosphere coupled model are used to study the air/sea interactions at the oceanic mesoscale in the Peru–Chile upwelling current system. Coupling between mesoscale sea surface temperature (SST) and wind stress (WS) intensity is evidenced and characterized by correlations and regression coefficients. Both the model and the observations display similar spatial and seasonal variability of the coupling characteristics that are stronger off Peru than off Northern Chile, in relation with stronger wind mean speed and steadiness. The coupling is also more intense during winter than during summer in both regions. It is shown that WS intensity anomalies due to SST anomalies are mainly forced by mixing coefficient anomalies and partially compensated by wind shear anomalies. A momentum balance analysis shows that wind speed anomalies are created by stress shear anomalies. Near-surface pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion. As mixing coefficients are mainly unchanged between summer and winter, the stronger coupling in winter is due to the enhanced large-scale wind shear that enables a more efficient action of the turbulent stress perturbations. This mechanism is robust as it does not depend on the choice of planetary boundary layer parameterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Perlin et al. (2014) tested several PBL schemes using the 3.3 version of WRF. They obtained a large overestimation of RC with MYNN, inconsistent with our results. Improvements in this parameterization between version 3.3 and 3.6 reduces RC (not shown).

  2. The WS \(\overrightarrow{\tau _{s}}\) being the turbulent stress \(\overrightarrow{\tau }\) condition at the air–sea interface, the intensity of both fields are highly correlated (>0.99) and are related by \(\tau_{s}'=\alpha\tau_{1}'\,\text{with}\,\alpha=0.95.\)

  3. SST anomalies creates 10 m temperature anomalies that are advected slightly downwind of the SST anomalies (not shown). Thus, the air temperature anomalies vertical profiles (Fig. 14c) are normalized with the 10-m air temperature anomalies values rather the SST values.

References

  • Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Wea Rev 125:2293–2315. doi:10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2

    Article  Google Scholar 

  • Benshila R, Durand F, Masson S, Bourdallé-Badie R, de Boyer MC, Papa F, Madec G (2014) The upper bay of Bengal salinity structure in a high-resolution model. Ocean Model 74:36–52. doi:10.1016/j.ocemod.2013.12.001

    Article  Google Scholar 

  • Bertrand A, Grados D, Colas F, Bertrand S, Capet X, Chaigneau A, Vargas G, Mousseigne A, Fablet R (2014) Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat Commun 5:5239. doi:10.1038/ncomms6239

    Article  Google Scholar 

  • Blanke B, Delecluse P (1993) Variability of the Tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388. doi:10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2

    Article  Google Scholar 

  • Boe J, Hall A, Colas F, McWilliams J, Qu X, Kurian J, Kapnick S (2011) What shapes mesoscale wind anomalies in coastal upwelling zones? Clim Dyn 36:2037–2049. doi:10.1007/s00382-011-1058-5

    Article  Google Scholar 

  • Bourras D, Reverdin G, Giordani H, Caniaux G (2004) Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J Geophys Res 109(D18):114. doi:10.1029/2004JD004799

    Article  Google Scholar 

  • Brachet S, Codron F, Feliks Y, Ghil M, Treut HL, Simonnet E (2012) Atmospheric circulations induced by a midlatitude SST front: a GCM study. J Clim 25:1847–1853. doi:10.1175/JCLI-D-11-00329.1

    Article  Google Scholar 

  • Bryan FO, Tomas R, Dennis JM, Chelton DB, Loeb NG, McClean JL (2010) Frontal scale air–sea interaction in high-resolution coupled climate models. J Clim 23:6277–6291. doi:10.1175/2010JCLI3665.1

    Article  Google Scholar 

  • Businger J, Shaw W (1984) The response of the marine boundary layer to mesoscale variations in sea-surface temperature. Dyn Atmos Oceans 8:267–281. doi:10.1016/0377-0265(84)90012-5

    Article  Google Scholar 

  • Byrne D, Papritz L, Frenger I, Münnich M, Gruber N (2015) Atmospheric response to mesoscale sea surface temperature anomalies: assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J Atmos Sci 72:1872–1890. doi:10.1175/JAS-D-14-0195.1

    Article  Google Scholar 

  • Capet X, Colas F, Penven P, Marchesiello P, McWilliams J (2008) Eddies in eastern-boundary subtropical upwelling systems. AGU Monogr 177:131–147. doi:10.1029/177GM10

    Google Scholar 

  • Castelao R (2012) Sea surface temperature and wind stress curl variability near a cape. J Phys Oceanogr 42:2073–2087. doi:10.1175/JPO-D-11-0224.1

    Article  Google Scholar 

  • CERSAT (2002) Mean wind fields (MWF product)-user manual-volume1: Quikscat. C2-MUT-W-04-IF. CERSAT-IFREMER http://www.ifremer/cersat.fr

  • Chelton DB, Esbensen SK, Schlax MG, Thum N, Freilich MH, Wentz FJ, Gentemann CL, McPhaden MJ, Schopf PS (2001) Observations of coupling between surface wind stress and sea surface temperature in the Eastern Tropical Pacific. J Clim 14:1479–1498. doi:10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978–983. doi:10.1126/science.1091901

    Article  Google Scholar 

  • Chelton DB, Schlax MG, Samelson RM (2007) Summertime coupling between sea surface temperature and wind stress in the California Current System. J Phys Oceanogr 37:495–517. doi:10.1175/JPO3025.1

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. Part ii: Preliminary model validation. Mon Weather Rev 129(4):587–604. doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2

    Article  Google Scholar 

  • Chou M, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Memo, p 84

  • Colas F, McWilliams JC, Capet X, Kurian J (2012) Heat balance and eddies in the Peru-Chile current system. Clim Dyn 39(1–2):509–529. doi:10.1007/s00382-011-1170-6

    Article  Google Scholar 

  • Colas F, Capet X, McWilliams JC, Li Z (2013) Mesoscale eddy buoyancy flux and eddy-induced circulation in Eastern Boundary Currents. J Phys Oceanogr 43:1073–1095. doi:10.1175/JPO-D-11-0241.1

    Article  Google Scholar 

  • Davey M et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18(5):403–420. doi:10.1007/s00382-001-0188-6

    Article  Google Scholar 

  • Dawe JT, Thompson L (2006) Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys Res Lett 33(L09):604. doi:10.1029/2006GL025784

    Google Scholar 

  • De Szoeke SP, Fairall CW, Wolfe DE, Bariteau L, Zuidema P (2010) Surface flux observations in the Southeastern Tropical Pacific and attribution of SST errors in coupled ocean–atmosphere models. J Clim 23:4152–4174. doi:10.1175/2010JCLI3411.1

    Article  Google Scholar 

  • De Szoeke SP, Yuter S, Mechem D, Fairall CW, Burleyson CD, Zuidema P (2012) Observations of stratocumulus clouds and their effect on the Eastern Pacific surface heat budget along 20°s. J Clim 25:8542–8567. doi:10.1175/jcli-d-11-00618.1

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Desbiolles F, Blanke B, Bentamy A (2014) Short-term upwelling events at the Western African coast related to synoptic atmospheric structures as derived from satellite observations. J Geophys Res Oceans 119:461–483. doi:10.1002/2013JC009278

    Article  Google Scholar 

  • Dunbar R, Lungu T, Weiss B, Stiles B, Huddleston J, Callahan P, Shirtliffe G, Perry K, Hsu C, Mears C, Wentz F, Smith D (2006) QuikSCAT science data product user manual, version 3.0. JPL Document D-18053-Rev A Jet Propulsion Laboratory, Pasadena, CA

  • Dussin R, Treguier AM, Molines JM, Barnier B, Penduff T, Brodeau L, Madec G (2009) Definition of the interannual experiment ORCA025-B83, 1958–2007. Tech. rep., LPO-09-02

  • Farrow DE, Stevens DP (1995) A new tracer advection scheme for Bryan and Cox type ocean general circulation models. J Phys Oceanogr 25:1731–1741. doi:10.1175/1520-0485(1995)025<1731:ANTASF>2.0.CO;2

    Google Scholar 

  • Frenger I, Gruber N, Knutti R, Münnich M (2013) Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat Geosci 6:608–612. doi:10.1038/ngeo1863

    Article  Google Scholar 

  • Gaube P, Chelton DB, Samelson RM, Schlax MG, O’Neill LW (2015) Satellite observations of mesoscale eddy-induced Ekman pumping. J Phys Oceanogr 45:104–132. doi:10.1175/JPO-D-14-0032.1

    Article  Google Scholar 

  • Giordani H, Planton S, Benech B, Kwon BH (1998) Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment. J Geophys Res 103(C11):25047–25060. doi:10.1029/98JC00892

    Article  Google Scholar 

  • Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Münnich M, McWilliams JC, Nagai T, Plattner GK (2011) Eddy-induced reduction of biological production in Eastern Boundary Upwelling Systems. Nat Geosci 4:787–792. doi:10.1038/ngeo1273

    Article  Google Scholar 

  • Hashizume H, Xie SP, Fujiwara M, Tanimoto TWY (2002) Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the Eastern Equatorial Pacific. J Clim 15:3379–3393. doi:10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2

    Article  Google Scholar 

  • Hayes S, McPhaden M, Wallace J (1989) The influence of sea surface temperature on surface wind in the Eastern Equatorial Pacific: weekly to monthly variability. J Clim 2:1500–1506. doi:10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2

    Article  Google Scholar 

  • Hogg A, Dewar WK, Berloff P, Kravtsov S, Hutchinson DK (2009) The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J Clim 22:4066–408. doi:10.1175/2009JCLI2629.1

    Article  Google Scholar 

  • Hong S, Lim J (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42(2):129–151

    Google Scholar 

  • Hong S, Yign N, Jimy D (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev 134:2318–2341. doi:10.1175/MWR3199.1

    Article  Google Scholar 

  • Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 124:2322–2339. doi:10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2

    Article  Google Scholar 

  • Hu XM, NG JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteor Climatol 49:1831–1844. doi:10.1175/2010JAMC2432.1

    Article  Google Scholar 

  • Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev 122:927–945. doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

    Article  Google Scholar 

  • Jin X, Dong C, Kurian J, McWilliams JC, Chelton DB, Li Z (2009) SST-wind interaction in coastal upwelling: oceanic simulation with empirical coupling. J Phys Oceanogr 39:2957–2970. doi:10.1175/2009JPO4205.1

    Article  Google Scholar 

  • Jouanno J, Sheinbaum J (2013) Heat balance and eddies in the Caribbean upwelling system. J Phys Oceanogr 43:1004–1014. doi:10.1175/JPO-D-12-0140.1

    Article  Google Scholar 

  • Kilpatrick T, Schneider N, Qiu B (2014) Boundary layer convergence induced by strong winds across a midlatitude SST front. J Clim 27:1698–1718. doi:10.1175/JCLI-D-13-00101.1

    Article  Google Scholar 

  • Kirtman BP et al (2012) Impact of ocean model resolution on CCSM climate simulations. Clim Dyn 39:1303–1328. doi:10.1007/s00382-012-1500-3

    Article  Google Scholar 

  • Koseki S, Watanabe M (2010) Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio extension. J Clim 23:2492–2507. doi:10.1175/2009JCLI2915.1

    Article  Google Scholar 

  • Lambaerts J, Lapeyre G, Plougonven R, Klein P (2013) Atmospheric response to sea surface temperature mesoscale structures. J Geophys Res Atmos 118:9611–9621. doi:10.1002/jgrd.50769

    Article  Google Scholar 

  • Lathuilière C, Echevin V, Lévy M, Madec G (2010) On the role of the mesoscale circulation on an idealized coastal upwelling ecosystem. J Geophys Res 115(C09):018. doi:10.1029/2009JC005827

    Google Scholar 

  • Lemarié F (2015) Numerical modification of atmospheric models to include the feedback of oceanic currents on air-sea fluxes in ocean-atmosphere coupled models. Technical Report RT-464, INRIA Grenoble - Rhône-Alpes, https://hal.inria.fr/hal-01184711/file/RT-464.pdf

  • Lindzen R, Nigam S (1987) On the role of sea surface temperature gradients in forcing low level winds and convergence in the Tropics. J Atmos Sci 44:2418–2436. doi:10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2

    Article  Google Scholar 

  • Liu W, Zhang A, Bishop J (1994) Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes. J Geophys Res 99:12,623–12,637. doi:10.1029/94JC00604

    Article  Google Scholar 

  • Lévy M, Estubier A, Madec G (2001) Choice of an advection scheme for biogeochemical models. Geophys Res Let 28:3725–3728. doi:10.1029/2001GL012947

    Article  Google Scholar 

  • Ma CC, Mechoso C, Robertson A, Arakawa A (1996) Peruvian stratus clouds and Tropical Pacific circulation: a coupled ocean–atmosphere (GCM) study. J Clim 9:1635–1645. doi:10.1007/s00382-008-0407-5

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL) 27. ISSN No. 1288–1619

  • Maloney ED, Chelton DB (2006) An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models. J Clim 19:2743–2762. doi:10.1175/JCLI3728.1

    Article  Google Scholar 

  • Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteorol Soc 86:89–93. doi:10.1175/BAMS-86-1-89

    Article  Google Scholar 

  • Minobe S, Kuwano-Yoshida A, Komori N, Xie SP, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209. doi:10.1038/nature06690

    Article  Google Scholar 

  • Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102:16,663–16,682. doi:10.1029/97JD00237

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Tr Inst Teor Geofiz Akad Nauk SSSR 24:1963–1987

    Google Scholar 

  • Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn 87:895–912. doi:10.2151/jmsj.87.895

    Article  Google Scholar 

  • Oerder V, Colas F, Echevin V, Codron F, Tam J, Belmadani A (2015) Peru-Chile upwelling dynamics under climate change. J Geophys Res Oceans 120(2):1152–1172. doi:10.1002/2014JC010299

    Article  Google Scholar 

  • O’Neill L, Chelton D, Esbensen S, Wentz F (2005) High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas return current. J Clim 18:2706–2723. doi:10.1175/JCLI3415.1

    Article  Google Scholar 

  • O’Neill LW, Esbensen S, Thum N, Samelson RM, Chelton DB (2010) Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J Clim 23:559–581. doi:10.1175/2009JCLI2662.1

    Article  Google Scholar 

  • O’Neill LW, Chelton DB, Esbensen SK (2012) Covariability of surface wind and stress responses to sea surface temperature fronts. J Clim 25:5916–5942. doi:10.1175/JCLI-D-11-00230.1

    Article  Google Scholar 

  • Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteor 9:857–861. doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2

    Article  Google Scholar 

  • Penven P, Echevin V, Pasapera J, Colas F, Tam J (2005) Average circulation, seasonal cycle, and mesoscale dynamics of the Peru current system: a modeling approach. J Geophys Res 110(C10):021. doi:10.1029/2005JC002945

    Article  Google Scholar 

  • Perlin N, Skyllingstad ED, Samelson RM, Barbour PL (2007) Numerical simulation of air–sea coupling during coastal upwelling. J Phys Oceanogr 37:2081–2093. doi:10.1175/JPO3104.1

    Article  Google Scholar 

  • Perlin N, de Szoeke SP, Chelton DB, Samelson RM, Skyllingstad ED, O’Neill LW (2014) Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations. Mon Wea Rev 142:4284–4307. doi:10.1175/MWR-D-13-00332.1

    Article  Google Scholar 

  • Piazza M, Terray L, Boé J, Maisonnave E, Sanchez-Gomez E (2015) Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model. Clim Dyn. doi:10.1007/s00382-015-2669-z

    Google Scholar 

  • Putrasahan DA, Miller A, Seo H (2013) Regional coupled ocean–atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air–sea fluxes, and ocean eddies. Ocean Dynam 63:463–488. doi:10.1007/s10236-013-0608-2

    Article  Google Scholar 

  • Renault L, Hall A, McWilliams JC (2015) Orographic shaping of US West Coast wind profiles during the upwelling season. Clim Dyn. doi:10.1007/s00382-015-2583-4

    Google Scholar 

  • Resplandy L, Lévy M, Madec G, Pous S, Aumont O, Kumar D (2011) Contribution of mesoscale processes to nutrient budgets in the Arabian sea. J Geophys Res 116(C11):007. doi:10.1029/2011JC007006

    Article  Google Scholar 

  • Samelson RM, Skyllingstad ED, Chelton DB, Esbensen SK, O’Neill LW, Thum N (2006) On the coupling of wind stress and sea surface temperature. J Clim 19:1557–1566. doi:10.1175/JCLI3682.1

    Article  Google Scholar 

  • Samson G, Masson S, Lengaigne M, Keerthi MG, Vialard J, Pous S, Madec G, Jourdain NC, Jullien S, Menkes C, Marchesiello P (2014) The NOW regional coupled model: application to the Tropical Indian ocean climate and tropical cyclone activity. J Adv Mod Earth Sys 6(3):700–722. doi:10.1002/2014MS000324

    Article  Google Scholar 

  • Schiffer R, Rossow W (1983) The international satellite cloud climatology project ISCCP: The first project of the world climate research programme. Bull Am Meteorol Soc 64:779–784

    Google Scholar 

  • Shin H, Hong SY (2011) Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound-Layer Meteor 139(2):261–281. doi:10.1007/s10546-010-9583-z

    Article  Google Scholar 

  • Shuckburgh E, Maze G, Ferreira D, Marshall J, Jones H, Hill C (2010) Mixed layer lateral eddy fluxes mediated by air–sea interaction. J Phys Oceanogr 41:130–144. doi:10.1175/2010JPO4429.1

    Article  Google Scholar 

  • Skamarock W, Klemp J (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comp Phys 227:3465–3485. doi:10.1016/j.jcp.2007.01.037

    Article  Google Scholar 

  • Skyllingstad ED, Vickers D, Mahrt L, Samelson R (2006) Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound-Layer Meteor 123:219–237. doi:10.1007/s10546-006-9127-8

    Article  Google Scholar 

  • Small R, deSzoeke S, Xie S, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319. doi:10.1016/j.dynatmoce.2008.01.001

    Article  Google Scholar 

  • Small RJ, Xie SP, Wang Y, Esbensen SK, Vickers D (2005) Numerical simulation of boundary layer structure and cross-equatorial flow in the Eastern Pacific. J Atmos Sci 62:1812–1830. doi:10.1175/JAS3433.1

    Article  Google Scholar 

  • Song Q, Cornillon P, Hara T (2006) Surface wind response to oceanic fronts. J Geophys Res 111(C12):006. doi:10.1029/2006JC003680

    Article  Google Scholar 

  • Spall MA (2007a) Effect of sea surface temperature–wind stress coupling on baroclinic instability in the ocean. J Phys Oceanogr 37:1092–1097. doi:10.1175/JPO3045.1

    Article  Google Scholar 

  • Spall MA (2007b) Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J Clim 20:3785–3801. doi:10.1175/JCLI4234.1

    Article  Google Scholar 

  • Strub PT, Mesias JM, Montecino V, Ruttlant J, Salinas S (1998) Coastal ocean circulation off western South America. In: Robinson AR, Brink KH (eds) The sea, vol 11. chap 10. Wiley, New-York, pp 273–314

  • Sweet W, Fett R, Kerling J, La Violette P (1981) Air-sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon Wea Rev 109:1042–1052. doi:10.1175/1520-0493(1981)109<1042:ASIEIT>2.0.CO;2

  • Valcke S, Craig T, Coquart L (2013) OASIS3-MCT user guide, OASIS3-MCT 2.0. Tech. rep., CERFACS/CNRS SUC URA No. 1875

  • Wai MK, Stage S (1989) Dynamical analysis of marine atmospheric boundary layer structure near the Gulf Stream oceanic front. Q J R Meteorol Soc 115:29–44. doi:10.1002/qj.49711548503

    Article  Google Scholar 

  • Wallace J, Mitchell T, Deser C (1989) The influence of sea surface temperature on surface wind in the Eastern Equatorial Pacific: seasonal and interannual variability. J Clim 2:1492–1499. doi:10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2

    Article  Google Scholar 

  • Webb D, de Cuevas B, Richmond C (1998) Improved advection schemes for ocean models. J Atmos Ocean Technol 15(5):1171–1187. doi:10.1175/1520-0426(1998)015<1171:IASFOM>2.0.CO;2

    Article  Google Scholar 

  • Wood R et al (2011) The VAMOS ocean−cloud−atmosphere−land study regional experiment (VOCALS-REx): goals, platforms, and field operations. Atmos Chem Phys 11:627–654. doi:10.5194/acp-11-627-2011

    Article  Google Scholar 

  • Wyant MC et al (2010) The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific. Atmos Chem Phys 10(10):4757–4774. doi:10.5194/acp-10-4757-2010

    Article  Google Scholar 

  • Xie SP (2004) Satellite observations of cool ocean-atmosphere interaction. Bull Am Meteorol Soc 85:195–208. doi:10.1175/BAMS-85-2-195

    Article  Google Scholar 

  • Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109(D19):105. doi:10.1029/2003JD004457

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of V. Oerder’s PhD thesis, sponsored by the Ministère de l’Enseignement Supérieur et de la Recherche. It is also part of the ANR project “PULSATION-11-MONU-010” and the LEFE/GMMC project “NEMPECH”. Simulations were performed on the supercomputer Curie from the GENCI at the CEA (projects 2011040542, 2012061047 and 2014102286). The authors want to thank Francoise Pinsard and Eric Maisonnave for their help in setting-up the coupled model NEMO-OASIS-WRF and Guillaume Samson, Hervé Giordani and Patrick Marchesiello for useful discussions. F. Lemarié acknowledges the support of the French LEFE/GMMC program through project SIMBAD. QSCAT WS data were provided by the CERSAT and are available online at ftp://ftp.ifremer.fr/ifremer/cersat/products/gridded/mwf-quikscat/data/. Microwave OI SST data are produced by Remote Sensing Systems and sponsored by National Oceanographic Partnership Program (NOPP), the NASA Earth Science Physical Oceanography Program, and the NASA MEaSUREs DISCOVER Project. Data are available at www.remss.com. Shortwave radiation from the ISCCP are available in the Objectively Analyzed air–sea Fluxes data and can be downloaded at http://oaflux.whoi.edu/. VOCALS-REx wind data are available online at ftp://precip.meas.ncsu.edu/pub/vocals/. Numerical data were obtained by model experiments described in Sect. 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Oerder.

Appendix: Double time averaging of the momentum balance

Appendix: Double time averaging of the momentum balance

The mechanisms driving the feedback of the SST anomalies on the wind speed are investigated. Monthly mean wind speed anomalies \(\langle V \rangle '\), proportional to the monthly mean SST anomalies \(\langle SST \rangle '\), are observed in our simulation (with primes marking the mesoscale anomalies and \(\langle \rangle\) the temporal average). We want to identify the dominant mechanism that creates \(\langle V \rangle '\). In this appendix, we explain why a simple time averaging of a momentum balance does not explain the mean wind speed. Then we present the double time averaging that should be used. It is similar to the one included in the NEMO code (Madec 2008).

A simple time-average of 1D momentum balance:

$$\partial _{t} {V}=\sum \limits _{F_{n}\in \{Forces\}}F_{n}$$
(14)

relates the forcing time average to the difference between the final and initial wind speed but not to the average wind speed \(\langle V \rangle\), which is the variable of interest:

$$\sum \limits _{F_{n}\in \{Forces\}} \langle F_{n}\rangle =\langle \partial_{t} {V} \rangle = \left\langle \frac{{\Delta } V}{{\Delta } t} \right\rangle =\frac{V(0)-V(N_{step})}{{\Delta } t}$$
(15)

with V(p), the wind speed p time steps after the beginning of the month, \(N_{step}\) the number of time steps during July, \({\Delta } t\) the time step duration, and \({\Delta } V=V(p)-V(p-1)\) the wind speed difference between 2 time steps.

The monthly mean wind speed is \(\langle V \rangle =\frac{1}{N_{step}+1}\sum \nolimits _{p=0}^{N_{step}}V(p)\) and V(p) can be expressed using the initial conditions V(0): \(V(p)=V(0)+ \sum \nolimits _{k=1}^{p}{\Delta } V\), so, we obtain:

$$\begin{aligned} \langle V \rangle&=\frac{1}{N_{step}+1}\sum \limits _{p=0}^{N_{step}}(V(0)+ \sum \limits _{k=1}^{p}{\Delta } V) \nonumber \\&=V(0)+\frac{1}{N_{step}+1}\sum \limits _{p=0}^{N_{step}}(\sum \limits _{k=1}^{p}{\Delta } V) \end{aligned}$$
(16)

We introduce a new metric \(\lceil F \rceil\), the double time averaging of a quantity F, defined as:

$$\begin{aligned} \lceil F \rceil =\frac{1}{N_{step}+1}\sum \limits _{p=0}^{N_{step}}(\sum \limits _{k=1}^{p}F) \end{aligned}$$
(17)

(16) can be written \(\langle V \rangle =V(0)+\lceil {\Delta } V \rceil\), i.e.

$$\begin{aligned} \frac{\langle V\rangle - V(0)}{{\Delta } t}=\lceil \frac{{\Delta } V}{{\Delta } t} \rceil \end{aligned}$$
(18)

\(\lceil \,\rceil\) is a linear operator, so, using (14), we obtain:

$$\begin{aligned} \frac{\langle V\rangle - V(0)}{{\Delta } t}=\lceil \frac{{\Delta } V}{{\Delta } t} \rceil =\lceil \partial _{t}V \rceil =\sum \limits _{F_{n}\in \{Forces\}} \lceil F_{n}'\rceil \end{aligned}$$
(19)

The left-hand side represents the mean temporal variation around the initial state V(0). The relative contribution of \(\lceil F_{n} \rceil\) indicates the dominant mechanisms.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oerder, V., Colas, F., Echevin, V. et al. Mesoscale SST–wind stress coupling in the Peru–Chile current system: Which mechanisms drive its seasonal variability?. Clim Dyn 47, 2309–2330 (2016). https://doi.org/10.1007/s00382-015-2965-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2965-7

Keywords

Navigation