Climate Dynamics

, Volume 47, Issue 7–8, pp 2309–2330 | Cite as

Mesoscale SST–wind stress coupling in the Peru–Chile current system: Which mechanisms drive its seasonal variability?

  • Vera Oerder
  • François Colas
  • Vincent Echevin
  • Sebastien Masson
  • Christophe Hourdin
  • Swen Jullien
  • Gurvan Madec
  • Florian Lemarié


Satellite observations and a high-resolution regional ocean–atmosphere coupled model are used to study the air/sea interactions at the oceanic mesoscale in the Peru–Chile upwelling current system. Coupling between mesoscale sea surface temperature (SST) and wind stress (WS) intensity is evidenced and characterized by correlations and regression coefficients. Both the model and the observations display similar spatial and seasonal variability of the coupling characteristics that are stronger off Peru than off Northern Chile, in relation with stronger wind mean speed and steadiness. The coupling is also more intense during winter than during summer in both regions. It is shown that WS intensity anomalies due to SST anomalies are mainly forced by mixing coefficient anomalies and partially compensated by wind shear anomalies. A momentum balance analysis shows that wind speed anomalies are created by stress shear anomalies. Near-surface pressure gradient anomalies have a negligible contribution because of the back-pressure effect related to the air temperature inversion. As mixing coefficients are mainly unchanged between summer and winter, the stronger coupling in winter is due to the enhanced large-scale wind shear that enables a more efficient action of the turbulent stress perturbations. This mechanism is robust as it does not depend on the choice of planetary boundary layer parameterization.


Ocean–atmosphere interactions Mesoscale SST–wind stress coupling Regional coupled modeling Eastern Boundary Upwelling System 



This work is part of V. Oerder’s PhD thesis, sponsored by the Ministère de l’Enseignement Supérieur et de la Recherche. It is also part of the ANR project “PULSATION-11-MONU-010” and the LEFE/GMMC project “NEMPECH”. Simulations were performed on the supercomputer Curie from the GENCI at the CEA (projects 2011040542, 2012061047 and 2014102286). The authors want to thank Francoise Pinsard and Eric Maisonnave for their help in setting-up the coupled model NEMO-OASIS-WRF and Guillaume Samson, Hervé Giordani and Patrick Marchesiello for useful discussions. F. Lemarié acknowledges the support of the French LEFE/GMMC program through project SIMBAD. QSCAT WS data were provided by the CERSAT and are available online at Microwave OI SST data are produced by Remote Sensing Systems and sponsored by National Oceanographic Partnership Program (NOPP), the NASA Earth Science Physical Oceanography Program, and the NASA MEaSUREs DISCOVER Project. Data are available at Shortwave radiation from the ISCCP are available in the Objectively Analyzed air–sea Fluxes data and can be downloaded at VOCALS-REx wind data are available online at Numerical data were obtained by model experiments described in Sect. 2.


  1. Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Wea Rev 125:2293–2315. doi: 10.1175/1520-0493(1997)125<2293:ROTBSC>2.0.CO;2 CrossRefGoogle Scholar
  2. Benshila R, Durand F, Masson S, Bourdallé-Badie R, de Boyer MC, Papa F, Madec G (2014) The upper bay of Bengal salinity structure in a high-resolution model. Ocean Model 74:36–52. doi: 10.1016/j.ocemod.2013.12.001 CrossRefGoogle Scholar
  3. Bertrand A, Grados D, Colas F, Bertrand S, Capet X, Chaigneau A, Vargas G, Mousseigne A, Fablet R (2014) Broad impacts of fine-scale dynamics on seascape structure from zooplankton to seabirds. Nat Commun 5:5239. doi: 10.1038/ncomms6239 CrossRefGoogle Scholar
  4. Blanke B, Delecluse P (1993) Variability of the Tropical Atlantic ocean simulated by a general circulation model with two different mixed layer physics. J Phys Oceanogr 23:1363–1388. doi: 10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2 CrossRefGoogle Scholar
  5. Boe J, Hall A, Colas F, McWilliams J, Qu X, Kurian J, Kapnick S (2011) What shapes mesoscale wind anomalies in coastal upwelling zones? Clim Dyn 36:2037–2049. doi: 10.1007/s00382-011-1058-5 CrossRefGoogle Scholar
  6. Bourras D, Reverdin G, Giordani H, Caniaux G (2004) Response of the atmospheric boundary layer to a mesoscale oceanic eddy in the northeast Atlantic. J Geophys Res 109(D18):114. doi: 10.1029/2004JD004799 CrossRefGoogle Scholar
  7. Brachet S, Codron F, Feliks Y, Ghil M, Treut HL, Simonnet E (2012) Atmospheric circulations induced by a midlatitude SST front: a GCM study. J Clim 25:1847–1853. doi: 10.1175/JCLI-D-11-00329.1 CrossRefGoogle Scholar
  8. Bryan FO, Tomas R, Dennis JM, Chelton DB, Loeb NG, McClean JL (2010) Frontal scale air–sea interaction in high-resolution coupled climate models. J Clim 23:6277–6291. doi: 10.1175/2010JCLI3665.1 CrossRefGoogle Scholar
  9. Businger J, Shaw W (1984) The response of the marine boundary layer to mesoscale variations in sea-surface temperature. Dyn Atmos Oceans 8:267–281. doi: 10.1016/0377-0265(84)90012-5 CrossRefGoogle Scholar
  10. Byrne D, Papritz L, Frenger I, Münnich M, Gruber N (2015) Atmospheric response to mesoscale sea surface temperature anomalies: assessment of mechanisms and coupling strength in a high-resolution coupled model over the South Atlantic. J Atmos Sci 72:1872–1890. doi: 10.1175/JAS-D-14-0195.1 CrossRefGoogle Scholar
  11. Capet X, Colas F, Penven P, Marchesiello P, McWilliams J (2008) Eddies in eastern-boundary subtropical upwelling systems. AGU Monogr 177:131–147. doi: 10.1029/177GM10 Google Scholar
  12. Castelao R (2012) Sea surface temperature and wind stress curl variability near a cape. J Phys Oceanogr 42:2073–2087. doi: 10.1175/JPO-D-11-0224.1 CrossRefGoogle Scholar
  13. CERSAT (2002) Mean wind fields (MWF product)-user manual-volume1: Quikscat. C2-MUT-W-04-IF. CERSAT-IFREMER http://www.ifremer/
  14. Chelton DB, Esbensen SK, Schlax MG, Thum N, Freilich MH, Wentz FJ, Gentemann CL, McPhaden MJ, Schopf PS (2001) Observations of coupling between surface wind stress and sea surface temperature in the Eastern Tropical Pacific. J Clim 14:1479–1498. doi: 10.1175/1520-0442(2001)014<1479:OOCBSW>2.0.CO;2 CrossRefGoogle Scholar
  15. Chelton DB, Schlax MG, Freilich MH, Milliff RF (2004) Satellite measurements reveal persistent small-scale features in ocean winds. Science 303:978–983. doi: 10.1126/science.1091901 CrossRefGoogle Scholar
  16. Chelton DB, Schlax MG, Samelson RM (2007) Summertime coupling between sea surface temperature and wind stress in the California Current System. J Phys Oceanogr 37:495–517. doi: 10.1175/JPO3025.1 CrossRefGoogle Scholar
  17. Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the penn state-NCAR MM5 modeling system. Part ii: Preliminary model validation. Mon Weather Rev 129(4):587–604. doi: 10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2 CrossRefGoogle Scholar
  18. Chou M, Suarez MJ (1994) An efficient thermal infrared radiation parameterization for use in general circulation models. NASA Tech Memo, p 84Google Scholar
  19. Colas F, McWilliams JC, Capet X, Kurian J (2012) Heat balance and eddies in the Peru-Chile current system. Clim Dyn 39(1–2):509–529. doi: 10.1007/s00382-011-1170-6 CrossRefGoogle Scholar
  20. Colas F, Capet X, McWilliams JC, Li Z (2013) Mesoscale eddy buoyancy flux and eddy-induced circulation in Eastern Boundary Currents. J Phys Oceanogr 43:1073–1095. doi: 10.1175/JPO-D-11-0241.1 CrossRefGoogle Scholar
  21. Davey M et al (2002) STOIC: a study of coupled model climatology and variability in tropical ocean regions. Clim Dyn 18(5):403–420. doi: 10.1007/s00382-001-0188-6 CrossRefGoogle Scholar
  22. Dawe JT, Thompson L (2006) Effect of ocean surface currents on wind stress, heat flux, and wind power input to the ocean. Geophys Res Lett 33(L09):604. doi: 10.1029/2006GL025784 Google Scholar
  23. De Szoeke SP, Fairall CW, Wolfe DE, Bariteau L, Zuidema P (2010) Surface flux observations in the Southeastern Tropical Pacific and attribution of SST errors in coupled ocean–atmosphere models. J Clim 23:4152–4174. doi: 10.1175/2010JCLI3411.1 CrossRefGoogle Scholar
  24. De Szoeke SP, Yuter S, Mechem D, Fairall CW, Burleyson CD, Zuidema P (2012) Observations of stratocumulus clouds and their effect on the Eastern Pacific surface heat budget along 20°s. J Clim 25:8542–8567. doi: 10.1175/jcli-d-11-00618.1 CrossRefGoogle Scholar
  25. Dee DP et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  26. Desbiolles F, Blanke B, Bentamy A (2014) Short-term upwelling events at the Western African coast related to synoptic atmospheric structures as derived from satellite observations. J Geophys Res Oceans 119:461–483. doi: 10.1002/2013JC009278 CrossRefGoogle Scholar
  27. Dunbar R, Lungu T, Weiss B, Stiles B, Huddleston J, Callahan P, Shirtliffe G, Perry K, Hsu C, Mears C, Wentz F, Smith D (2006) QuikSCAT science data product user manual, version 3.0. JPL Document D-18053-Rev A Jet Propulsion Laboratory, Pasadena, CAGoogle Scholar
  28. Dussin R, Treguier AM, Molines JM, Barnier B, Penduff T, Brodeau L, Madec G (2009) Definition of the interannual experiment ORCA025-B83, 1958–2007. Tech. rep., LPO-09-02Google Scholar
  29. Farrow DE, Stevens DP (1995) A new tracer advection scheme for Bryan and Cox type ocean general circulation models. J Phys Oceanogr 25:1731–1741. doi: 10.1175/1520-0485(1995)025<1731:ANTASF>2.0.CO;2 Google Scholar
  30. Frenger I, Gruber N, Knutti R, Münnich M (2013) Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nat Geosci 6:608–612. doi: 10.1038/ngeo1863 CrossRefGoogle Scholar
  31. Gaube P, Chelton DB, Samelson RM, Schlax MG, O’Neill LW (2015) Satellite observations of mesoscale eddy-induced Ekman pumping. J Phys Oceanogr 45:104–132. doi: 10.1175/JPO-D-14-0032.1 CrossRefGoogle Scholar
  32. Giordani H, Planton S, Benech B, Kwon BH (1998) Atmospheric boundary layer response to sea surface temperatures during the SEMAPHORE experiment. J Geophys Res 103(C11):25047–25060. doi: 10.1029/98JC00892 CrossRefGoogle Scholar
  33. Gruber N, Lachkar Z, Frenzel H, Marchesiello P, Münnich M, McWilliams JC, Nagai T, Plattner GK (2011) Eddy-induced reduction of biological production in Eastern Boundary Upwelling Systems. Nat Geosci 4:787–792. doi: 10.1038/ngeo1273 CrossRefGoogle Scholar
  34. Hashizume H, Xie SP, Fujiwara M, Tanimoto TWY (2002) Direct observations of atmospheric boundary layer response to SST variations associated with tropical instability waves over the Eastern Equatorial Pacific. J Clim 15:3379–3393. doi: 10.1175/1520-0442(2002)015<3379:DOOABL>2.0.CO;2 CrossRefGoogle Scholar
  35. Hayes S, McPhaden M, Wallace J (1989) The influence of sea surface temperature on surface wind in the Eastern Equatorial Pacific: weekly to monthly variability. J Clim 2:1500–1506. doi: 10.1175/1520-0442(1989)002<1500:TIOSST>2.0.CO;2 CrossRefGoogle Scholar
  36. Hogg A, Dewar WK, Berloff P, Kravtsov S, Hutchinson DK (2009) The effects of mesoscale ocean–atmosphere coupling on the large-scale ocean circulation. J Clim 22:4066–408. doi: 10.1175/2009JCLI2629.1 CrossRefGoogle Scholar
  37. Hong S, Lim J (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42(2):129–151Google Scholar
  38. Hong S, Yign N, Jimy D (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Wea Rev 134:2318–2341. doi: 10.1175/MWR3199.1 CrossRefGoogle Scholar
  39. Hong SY, Pan HL (1996) Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Wea Rev 124:2322–2339. doi: 10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2 CrossRefGoogle Scholar
  40. Hu XM, NG JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteor Climatol 49:1831–1844. doi: 10.1175/2010JAMC2432.1 CrossRefGoogle Scholar
  41. Janjic ZI (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev 122:927–945. doi: 10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2 CrossRefGoogle Scholar
  42. Jin X, Dong C, Kurian J, McWilliams JC, Chelton DB, Li Z (2009) SST-wind interaction in coastal upwelling: oceanic simulation with empirical coupling. J Phys Oceanogr 39:2957–2970. doi: 10.1175/2009JPO4205.1 CrossRefGoogle Scholar
  43. Jouanno J, Sheinbaum J (2013) Heat balance and eddies in the Caribbean upwelling system. J Phys Oceanogr 43:1004–1014. doi: 10.1175/JPO-D-12-0140.1 CrossRefGoogle Scholar
  44. Kilpatrick T, Schneider N, Qiu B (2014) Boundary layer convergence induced by strong winds across a midlatitude SST front. J Clim 27:1698–1718. doi: 10.1175/JCLI-D-13-00101.1 CrossRefGoogle Scholar
  45. Kirtman BP et al (2012) Impact of ocean model resolution on CCSM climate simulations. Clim Dyn 39:1303–1328. doi: 10.1007/s00382-012-1500-3 CrossRefGoogle Scholar
  46. Koseki S, Watanabe M (2010) Atmospheric boundary layer response to mesoscale SST anomalies in the Kuroshio extension. J Clim 23:2492–2507. doi: 10.1175/2009JCLI2915.1 CrossRefGoogle Scholar
  47. Lambaerts J, Lapeyre G, Plougonven R, Klein P (2013) Atmospheric response to sea surface temperature mesoscale structures. J Geophys Res Atmos 118:9611–9621. doi: 10.1002/jgrd.50769 CrossRefGoogle Scholar
  48. Lathuilière C, Echevin V, Lévy M, Madec G (2010) On the role of the mesoscale circulation on an idealized coastal upwelling ecosystem. J Geophys Res 115(C09):018. doi: 10.1029/2009JC005827 Google Scholar
  49. Lemarié F (2015) Numerical modification of atmospheric models to include the feedback of oceanic currents on air-sea fluxes in ocean-atmosphere coupled models. Technical Report RT-464, INRIA Grenoble - Rhône-Alpes,
  50. Lindzen R, Nigam S (1987) On the role of sea surface temperature gradients in forcing low level winds and convergence in the Tropics. J Atmos Sci 44:2418–2436. doi: 10.1175/1520-0469(1987)044<2418:OTROSS>2.0.CO;2 CrossRefGoogle Scholar
  51. Liu W, Zhang A, Bishop J (1994) Evaporation and solar irradiance as regulators of sea surface temperature in annual and interannual changes. J Geophys Res 99:12,623–12,637. doi: 10.1029/94JC00604 CrossRefGoogle Scholar
  52. Lévy M, Estubier A, Madec G (2001) Choice of an advection scheme for biogeochemical models. Geophys Res Let 28:3725–3728. doi: 10.1029/2001GL012947 CrossRefGoogle Scholar
  53. Ma CC, Mechoso C, Robertson A, Arakawa A (1996) Peruvian stratus clouds and Tropical Pacific circulation: a coupled ocean–atmosphere (GCM) study. J Clim 9:1635–1645. doi: 10.1007/s00382-008-0407-5 CrossRefGoogle Scholar
  54. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL) 27. ISSN No. 1288–1619Google Scholar
  55. Maloney ED, Chelton DB (2006) An assessment of the sea surface temperature influence on surface wind stress in numerical weather prediction and climate models. J Clim 19:2743–2762. doi: 10.1175/JCLI3728.1 CrossRefGoogle Scholar
  56. Meehl GA, Covey C, McAvaney B, Latif M, Stouffer RJ (2005) Overview of the coupled model intercomparison project. Bull Am Meteorol Soc 86:89–93. doi: 10.1175/BAMS-86-1-89 CrossRefGoogle Scholar
  57. Minobe S, Kuwano-Yoshida A, Komori N, Xie SP, Small RJ (2008) Influence of the Gulf Stream on the troposphere. Nature 452:206–209. doi: 10.1038/nature06690 CrossRefGoogle Scholar
  58. Mlawer E, Taubman S, Brown P, Iacono M, Clough S (1997) Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the long-wave. J Geophys Res 102:16,663–16,682. doi: 10.1029/97JD00237 CrossRefGoogle Scholar
  59. Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the atmosphere near the ground. Tr Inst Teor Geofiz Akad Nauk SSSR 24:1963–1987Google Scholar
  60. Nakanishi M, Niino H (2009) Development of an improved turbulence closure model for the atmospheric boundary layer. J Meteorol Soc Jpn 87:895–912. doi: 10.2151/jmsj.87.895 CrossRefGoogle Scholar
  61. Oerder V, Colas F, Echevin V, Codron F, Tam J, Belmadani A (2015) Peru-Chile upwelling dynamics under climate change. J Geophys Res Oceans 120(2):1152–1172. doi: 10.1002/2014JC010299 CrossRefGoogle Scholar
  62. O’Neill L, Chelton D, Esbensen S, Wentz F (2005) High-resolution satellite measurements of the atmospheric boundary layer response to SST variations along the Agulhas return current. J Clim 18:2706–2723. doi: 10.1175/JCLI3415.1 CrossRefGoogle Scholar
  63. O’Neill LW, Esbensen S, Thum N, Samelson RM, Chelton DB (2010) Dynamical analysis of the boundary layer and surface wind responses to mesoscale SST perturbations. J Clim 23:559–581. doi: 10.1175/2009JCLI2662.1 CrossRefGoogle Scholar
  64. O’Neill LW, Chelton DB, Esbensen SK (2012) Covariability of surface wind and stress responses to sea surface temperature fronts. J Clim 25:5916–5942. doi: 10.1175/JCLI-D-11-00230.1 CrossRefGoogle Scholar
  65. Paulson CA (1970) The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J Appl Meteor 9:857–861. doi: 10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2 CrossRefGoogle Scholar
  66. Penven P, Echevin V, Pasapera J, Colas F, Tam J (2005) Average circulation, seasonal cycle, and mesoscale dynamics of the Peru current system: a modeling approach. J Geophys Res 110(C10):021. doi: 10.1029/2005JC002945 CrossRefGoogle Scholar
  67. Perlin N, Skyllingstad ED, Samelson RM, Barbour PL (2007) Numerical simulation of air–sea coupling during coastal upwelling. J Phys Oceanogr 37:2081–2093. doi: 10.1175/JPO3104.1 CrossRefGoogle Scholar
  68. Perlin N, de Szoeke SP, Chelton DB, Samelson RM, Skyllingstad ED, O’Neill LW (2014) Modeling the atmospheric boundary layer wind response to mesoscale sea surface temperature perturbations. Mon Wea Rev 142:4284–4307. doi: 10.1175/MWR-D-13-00332.1 CrossRefGoogle Scholar
  69. Piazza M, Terray L, Boé J, Maisonnave E, Sanchez-Gomez E (2015) Influence of small-scale North Atlantic sea surface temperature patterns on the marine boundary layer and free troposphere: a study using the atmospheric ARPEGE model. Clim Dyn. doi: 10.1007/s00382-015-2669-z Google Scholar
  70. Putrasahan DA, Miller A, Seo H (2013) Regional coupled ocean–atmosphere downscaling in the Southeast Pacific: impacts on upwelling, mesoscale air–sea fluxes, and ocean eddies. Ocean Dynam 63:463–488. doi: 10.1007/s10236-013-0608-2 CrossRefGoogle Scholar
  71. Renault L, Hall A, McWilliams JC (2015) Orographic shaping of US West Coast wind profiles during the upwelling season. Clim Dyn. doi: 10.1007/s00382-015-2583-4 Google Scholar
  72. Resplandy L, Lévy M, Madec G, Pous S, Aumont O, Kumar D (2011) Contribution of mesoscale processes to nutrient budgets in the Arabian sea. J Geophys Res 116(C11):007. doi: 10.1029/2011JC007006 CrossRefGoogle Scholar
  73. Samelson RM, Skyllingstad ED, Chelton DB, Esbensen SK, O’Neill LW, Thum N (2006) On the coupling of wind stress and sea surface temperature. J Clim 19:1557–1566. doi: 10.1175/JCLI3682.1 CrossRefGoogle Scholar
  74. Samson G, Masson S, Lengaigne M, Keerthi MG, Vialard J, Pous S, Madec G, Jourdain NC, Jullien S, Menkes C, Marchesiello P (2014) The NOW regional coupled model: application to the Tropical Indian ocean climate and tropical cyclone activity. J Adv Mod Earth Sys 6(3):700–722. doi: 10.1002/2014MS000324 CrossRefGoogle Scholar
  75. Schiffer R, Rossow W (1983) The international satellite cloud climatology project ISCCP: The first project of the world climate research programme. Bull Am Meteorol Soc 64:779–784Google Scholar
  76. Shin H, Hong SY (2011) Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Bound-Layer Meteor 139(2):261–281. doi: 10.1007/s10546-010-9583-z CrossRefGoogle Scholar
  77. Shuckburgh E, Maze G, Ferreira D, Marshall J, Jones H, Hill C (2010) Mixed layer lateral eddy fluxes mediated by air–sea interaction. J Phys Oceanogr 41:130–144. doi: 10.1175/2010JPO4429.1 CrossRefGoogle Scholar
  78. Skamarock W, Klemp J (2008) A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J Comp Phys 227:3465–3485. doi: 10.1016/ CrossRefGoogle Scholar
  79. Skyllingstad ED, Vickers D, Mahrt L, Samelson R (2006) Effects of mesoscale sea-surface temperature fronts on the marine atmospheric boundary layer. Bound-Layer Meteor 123:219–237. doi: 10.1007/s10546-006-9127-8 CrossRefGoogle Scholar
  80. Small R, deSzoeke S, Xie S, O’Neill L, Seo H, Song Q, Cornillon P, Spall M, Minobe S (2008) Air–sea interaction over ocean fronts and eddies. Dyn Atmos Oceans 45:274–319. doi: 10.1016/j.dynatmoce.2008.01.001 CrossRefGoogle Scholar
  81. Small RJ, Xie SP, Wang Y, Esbensen SK, Vickers D (2005) Numerical simulation of boundary layer structure and cross-equatorial flow in the Eastern Pacific. J Atmos Sci 62:1812–1830. doi: 10.1175/JAS3433.1 CrossRefGoogle Scholar
  82. Song Q, Cornillon P, Hara T (2006) Surface wind response to oceanic fronts. J Geophys Res 111(C12):006. doi: 10.1029/2006JC003680 CrossRefGoogle Scholar
  83. Spall MA (2007a) Effect of sea surface temperature–wind stress coupling on baroclinic instability in the ocean. J Phys Oceanogr 37:1092–1097. doi: 10.1175/JPO3045.1 CrossRefGoogle Scholar
  84. Spall MA (2007b) Midlatitude wind stress–sea surface temperature coupling in the vicinity of oceanic fronts. J Clim 20:3785–3801. doi: 10.1175/JCLI4234.1 CrossRefGoogle Scholar
  85. Strub PT, Mesias JM, Montecino V, Ruttlant J, Salinas S (1998) Coastal ocean circulation off western South America. In: Robinson AR, Brink KH (eds) The sea, vol 11. chap 10. Wiley, New-York, pp 273–314Google Scholar
  86. Sweet W, Fett R, Kerling J, La Violette P (1981) Air-sea interaction effects in the lower troposphere across the north wall of the Gulf Stream. Mon Wea Rev 109:1042–1052. doi: 10.1175/1520-0493(1981)109<1042:ASIEIT>2.0.CO;2
  87. Valcke S, Craig T, Coquart L (2013) OASIS3-MCT user guide, OASIS3-MCT 2.0. Tech. rep., CERFACS/CNRS SUC URA No. 1875Google Scholar
  88. Wai MK, Stage S (1989) Dynamical analysis of marine atmospheric boundary layer structure near the Gulf Stream oceanic front. Q J R Meteorol Soc 115:29–44. doi: 10.1002/qj.49711548503 CrossRefGoogle Scholar
  89. Wallace J, Mitchell T, Deser C (1989) The influence of sea surface temperature on surface wind in the Eastern Equatorial Pacific: seasonal and interannual variability. J Clim 2:1492–1499. doi: 10.1175/1520-0442(1989)002<1492:TIOSST>2.0.CO;2 CrossRefGoogle Scholar
  90. Webb D, de Cuevas B, Richmond C (1998) Improved advection schemes for ocean models. J Atmos Ocean Technol 15(5):1171–1187. doi: 10.1175/1520-0426(1998)015<1171:IASFOM>2.0.CO;2 CrossRefGoogle Scholar
  91. Wood R et al (2011) The VAMOS ocean−cloud−atmosphere−land study regional experiment (VOCALS-REx): goals, platforms, and field operations. Atmos Chem Phys 11:627–654. doi: 10.5194/acp-11-627-2011 CrossRefGoogle Scholar
  92. Wyant MC et al (2010) The PreVOCA experiment: modeling the lower troposphere in the Southeast Pacific. Atmos Chem Phys 10(10):4757–4774. doi: 10.5194/acp-10-4757-2010 CrossRefGoogle Scholar
  93. Xie SP (2004) Satellite observations of cool ocean-atmosphere interaction. Bull Am Meteorol Soc 85:195–208. doi: 10.1175/BAMS-85-2-195 CrossRefGoogle Scholar
  94. Zhang YC, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109(D19):105. doi: 10.1029/2003JD004457 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vera Oerder
    • 1
  • François Colas
    • 1
  • Vincent Echevin
    • 1
  • Sebastien Masson
    • 1
  • Christophe Hourdin
    • 1
  • Swen Jullien
    • 1
    • 2
  • Gurvan Madec
    • 1
    • 3
  • Florian Lemarié
    • 4
  1. 1.LOCEAN-IPSL, CNRS/IRD/UPMC, UMR7159ParisFrance
  2. 2.LOS, IFREMERPlouzanéFrance
  3. 3.National Oceanography Centre, SouthamptonMarine Systems Modelling GroupSouthamptonUK
  4. 4.INRIA, Université Grenoble Alpes, CNRS, LJKGrenobleFrance

Personalised recommendations