Advertisement

Climate Dynamics

, Volume 47, Issue 7–8, pp 2235–2251 | Cite as

Evaluating synoptic systems in the CMIP5 climate models over the Australian region

  • Peter B. Gibson
  • Petteri Uotila
  • Sarah E. Perkins-Kirkpatrick
  • Lisa V. Alexander
  • Andrew J. Pitman
Article

Abstract

Climate models are our principal tool for generating the projections used to inform climate change policy. Our confidence in projections depends, in part, on how realistically they simulate present day climate and associated variability over a range of time scales. Traditionally, climate models are less commonly assessed at time scales relevant to daily weather systems. Here we explore the utility of a self-organizing maps (SOMs) procedure for evaluating the frequency, persistence and transitions of daily synoptic systems in the Australian region simulated by state-of-the-art global climate models. In terms of skill in simulating the climatological frequency of synoptic systems, large spread was observed between models. A positive association between all metrics was found, implying that relative skill in simulating the persistence and transitions of systems is related to skill in simulating the climatological frequency. Considering all models and metrics collectively, model performance was found to be related to model horizontal resolution but unrelated to vertical resolution or representation of the stratosphere. In terms of the SOM procedure, the timespan over which evaluation was performed had some influence on model performance skill measures, as did the number of circulation types examined. These findings have implications for selecting models most useful for future projections over the Australian region, particularly for projections related to synoptic scale processes and phenomena. More broadly, this study has demonstrated the utility of the SOMs procedure in providing a process-based evaluation of climate models.

Keywords

Self-organizing maps Weather typing Frequency Persistence Transitions 

Notes

Acknowledgments

This work was supported by the Australian Research Council Centre of Excellence for Climate System Science Grant CE110001028. Author P.G. was supported by an Australian Postgraduate Award and author S.P. was supported by an Australian Research Council Discovery Early Career Researcher Award (DE140100952). We thank the NCI National Facility at the Australian National University for providing data storage and computational facilities. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. For CMIP the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. We acknowledge NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, for the provision of the 20CRv2 and NCEP2 data, ECMWF for providing the ERA-Interim data and the JMA for providing the JRA-55 data used in this study.

Supplementary material

382_2015_2961_MOESM1_ESM.docx (514 kb)
Supplementary material 1 (DOCX 513 kb)

References

  1. Alexander LV, Uotila P, Nicholls N, Lynch A (2010) A new daily pressure dataset for Australia and its application to the assessment of changes in synoptic patterns during the last century. J Clim 23(5):1111–1126. doi: 10.1175/2009JCLI2972.1 CrossRefGoogle Scholar
  2. Anstey JA, Davini P, Gray LJ, Woollings TJ, Butchart N, Cagnazzo C, Christiansen B, Hardiman SC, Osprey SM, Yang S (2013) Multi-model analysis of Northern Hemisphere winter blocking: model biases and the role of resolution. J Geophys Res Atmos 118(10):3956–3971. doi: 10.1002/jgrd.50231 CrossRefGoogle Scholar
  3. Appelhans T, Sturman A, Zawar-Reza P (2013) Synoptic and climatological controls of particulate matter pollution in a Southern Hemisphere coastal city. Int J Climatol 33(2):463–479. doi: 10.1002/joc.3439 CrossRefGoogle Scholar
  4. Barry RG, Perry AH (1973) Synoptic climatology: methods and applications, vol 5. Methuen, LondonGoogle Scholar
  5. Beentjes MP, Renwick JA (2001) The relationship between red cod, Pseudophycis bachus, recruitment and environmental variables in New Zealand. Environ Biol Fishes 61(3):315–328. doi: 10.1023/A:1010943906264 CrossRefGoogle Scholar
  6. Berckmans J, Woollings T, Demory M-E, Vidale P-L, Roberts M (2013) Atmospheric blocking in a high resolution climate model: influences of mean state, orography and eddy forcing. Atmos Sci Lett 14(1):34–40. doi: 10.1002/asl2.412 CrossRefGoogle Scholar
  7. Boé J, Terray L (2008) A weather-type approach to analyzing winter precipitation in France: twentieth-century trends and the role of anthropogenic forcing. J Clim 21(13):3118–3133. doi: 10.1175/2007JCLI1796.1 CrossRefGoogle Scholar
  8. Bromwich DH, Fogt RL (2004) Strong Trends in the skill of the ERA-40 and NCEP-NCAR reanalyses in the high and midlatitudes of the Southern Hemisphere, 1958–2001*. J Clim 17(23):4603–4619. doi: 10.1175/3241.1 CrossRefGoogle Scholar
  9. Brown JR, Jakob C, Haynes JM (2010) An evaluation of rainfall frequency and intensity over the Australian region in a global climate model. J Clim 23(24):6504–6525. doi: 10.1175/2010JCLI3571.1 CrossRefGoogle Scholar
  10. Cassano JJ, Uotila P, Lynch A (2006) Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 1: Arctic. Int J Climatol 26(8):1027–1049. doi: 10.1002/joc.1306 CrossRefGoogle Scholar
  11. Cassano JJ, Uotila P, Lynch AH, Cassano EN (2007) Predicted changes in synoptic forcing of net precipitation in large Arctic river basins during the 21st century. J Geophys Res Biogeosci 112(G4):49. doi: 10.1029/2006JG000332 CrossRefGoogle Scholar
  12. Ceppi P, Hwang Y-T, Frierson DMW, Hartmann DL (2012) Southern Hemisphere jet latitude biases in CMIP5 models linked to shortwave cloud forcing. Geophys Res Lett 39(19):L19708. doi: 10.1029/2012GL053115 CrossRefGoogle Scholar
  13. Charlton-Perez AJ, Baldwin MP, Birner T, Black RX, Butler AH, Calvo N, Davis NA, Gerber EP, Gillett N, Hardiman S, Kim J, Krüger K, Lee Y-Y, Manzini E, McDaniel BA, Polvani L, Reichler T, Shaw TA, Sigmond M, Son S-W, Toohey M, Wilcox L, Yoden S, Christiansen B, Lott F, Shindell D, Yukimoto S, Watanabe S (2013) On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J Geophys Res Atmos 118(6):2494–2505. doi: 10.1002/jgrd.50125 CrossRefGoogle Scholar
  14. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  15. Corte-Real J, Quian B, Xu H (1999) Circulation patterns, daily precipitation in Portugal and implications for climate change simulated by the second Hadley Centre GCM. Clim Dyn 15(12):921–935. doi: 10.1007/s003820050322 CrossRefGoogle Scholar
  16. Dawson A, Palmer TN, Corti S (2012) Simulating regime structures in weather and climate prediction models. Geophys Res Lett 39(21):L21805. doi: 10.1029/2012GL053284 CrossRefGoogle Scholar
  17. Dee DP, Uppala S (2009) Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q J R Meteorol Soc 135(644):1830–1841. doi: 10.1002/qj.493 CrossRefGoogle Scholar
  18. Donat MG, Leckebusch GC, Pinto JG, Ulbrich U (2010) Examination of wind storms over Central Europe with respect to circulation weather types and NAO phases. Int J Climatol 30(9):1289–1300. doi: 10.1002/joc.1982 Google Scholar
  19. Ebita A, Kobayashi S, Ota Y, Moriya M, Kumabe R, Onogi K, Harada Y, Yasui S, Miyaoka K, Takahashi K, Kamahori H, Kobayashi C, Endo H, Soma M, Oikawa Y, Ishimizu T (2011) The Japanese 55-year reanalysis “JRA-55”: an interim report. SOLA 7:149–152. doi: 10.2151/sola.2011-038 CrossRefGoogle Scholar
  20. Fettweis X, Mabille G, Erpicum M, Nicolay S, den Broeke M (2011) The 1958–2009 Greenland ice sheet surface melt and the mid-tropospheric atmospheric circulation. Clim Dyn 36(1–2):139–159. doi: 10.1007/s00382-010-0772-8 CrossRefGoogle Scholar
  21. Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought–synoptic diagnosis and impacts. Weather 59(8):209–216. doi: 10.1256/wea.73.04 CrossRefGoogle Scholar
  22. Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture-atmosphere interactions during the 2003 European summer heat wave. J Clim 20(20):5081–5099. doi: 10.1175/JCLI4288.1 CrossRefGoogle Scholar
  23. Flato GM (2011) Earth system models: an overview. Wiley Interdiscip Rev Clim Change 2(6):783–800. doi: 10.1002/wcc.148 CrossRefGoogle Scholar
  24. Flato G, Marotzke J, Abiodun B, Braconnot P, Chou SC, Collins W, Cox P, Driouech F, Emori S, Eyring V, Forest C, Gleckler P, Guilyardi E, Jakob C, Kattsov V, Reason C, Rummukainen M (2013) Evaluation of climate models. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  25. Gibson PB, Cullen NJ (2015) Regional variability in New Zealand’s wind resource linked to synoptic-scale circulation: implications for generation reliability. J Appl Meteorol Climatol 54(5):944–958CrossRefGoogle Scholar
  26. Hewitson B, Crane RG (1992) Regional climates in the GISS global circulation model: synoptic-scale circulation. J Clim 5(9):1002–1011. doi: 10.1175/1520-0442(1992)005<1002:RCITGG>2.0.CO;2 CrossRefGoogle Scholar
  27. Hewitson B, Crane R (2002) Self-organizing maps: applications to synoptic climatology. Clim Res 22(1):13–26. doi: 10.3354/cr022013 CrossRefGoogle Scholar
  28. Hope PK (2006) Projected future changes in synoptic systems influencing southwest Western Australia. Clim Dyn 26(7–8):765–780. doi: 10.1007/s00382-006-0116-x CrossRefGoogle Scholar
  29. Hope PK, Drosdowsky W, Nicholls N (2006) Shifts in the synoptic systems influencing southwest Western Australia. Clim Dyn 26(7–8):751–764. doi: 10.1007/s00382-006-0115-y CrossRefGoogle Scholar
  30. Hope P, Keay K, Pook M, Catto J, Simmonds I, Mills G, McIntosh P, Risbey J, Berry G (2014) A comparison of automated methods of front recognition for climate studies: a case study in southwest Western Australia. Mon Weather Rev 142(1):343–363. doi: 10.1175/MWR-D-12-00252.1 CrossRefGoogle Scholar
  31. Horton DE, Johnson NC, Singh D, Swain DL, Rajaratnam B, Diffenbaugh NS (2015) Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522(7557):465–469. doi: 10.1038/nature14550 CrossRefGoogle Scholar
  32. Hulme M, Briffal KR, Jones PD, Senior CA (1993) Validation of GCM control simulations using indices of daily airflow types over the British Isles. Clim Dyn 9(2):95–105. doi: 10.1007/BF00210012 CrossRefGoogle Scholar
  33. Jiang N, Luo K, Beggs PJ, Cheung K, Scorgie Y (2014) Insights into the implementation of synoptic weather-type classification using self-organizing maps: an Australian case study. Int J Climatol. doi: 10.1002/joc.4221 Google Scholar
  34. Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP–DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83(11):1631–1643. doi: 10.1175/BAMS-83-11-1631 CrossRefGoogle Scholar
  35. Kohonen T (2001) Self-organizing maps. Springer, New YorkCrossRefGoogle Scholar
  36. Lee S, Feldstein SB (2013) Detecting ozone-and greenhouse gas–driven wind trends with observational data. Science 339(6119):563–567. doi: 10.1126/science.1225154 CrossRefGoogle Scholar
  37. Lorrey A, Fauchereau N, Stanton C, Chappell P, Phipps S, Mackintosh A, Renwick J, Goodwin I, Fowler A (2014) The little ice age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach. Clim Dyn 42(11–12):3039–3060. doi: 10.1007/s00382-013-1876-8 CrossRefGoogle Scholar
  38. Lynch A, Uotila P, Cassano JJ (2006) Changes in synoptic weather patterns in the polar regions in the twentieth and twenty-first centuries, part 2: Antarctic. Int J Climatol 26(9):1181–1199. doi: 10.1002/joc.1305 CrossRefGoogle Scholar
  39. Matthews T, Hodgkins R, Wilby RL, Guðmundsson S, Pálsson F, Björnsson H, Carr S (2015) Conditioning temperature-index model parameters on synoptic weather types for glacier melt simulations. Hydrol Process 29(6):1027–1045. doi: 10.1002/hyp.10217 CrossRefGoogle Scholar
  40. McGregor G, Bamzelis D (1995) Synoptic typing and its application to the investigation of weather air pollution relationships, Birmingham, United Kingdom. Theor Appl Climatol 51(4):223–236. doi: 10.1007/BF00867281 CrossRefGoogle Scholar
  41. McKendry IG, Stahl K, Moore RD (2006) Synoptic sea-level pressure patterns generated by a general circulation model: comparison with types derived from NCEP/NCAR re-analysis and implications for downscaling. Int J Climatol 26(12):1727–1736. doi: 10.1002/joc.1337 CrossRefGoogle Scholar
  42. Neale SM, Fitzharris BB (1997) Energy balance and synoptic climatology of a melting snowpack in the Southern Alps, New Zealand. Int J Climatol 17(14):1595–1609. doi: 10.1002/(SICI)1097-0088(19971130)17:14<1595:AID-JOC213>3.0.CO;2-7 CrossRefGoogle Scholar
  43. Nicholls N, Uotila P, Alexander L (2010) Synoptic influences on seasonal, interannual and decadal temperature variations in Melbourne, Australia. Int J Climatol 30(9):1372–1381. doi: 10.1002/joc.1965 Google Scholar
  44. Parsons S, McDonald AJ, Renwick JA (2014) The use of synoptic climatology with general circulation model output over New Zealand. Int J Climatol 34(12):3426–3439. doi: 10.1002/joc.3919 CrossRefGoogle Scholar
  45. Pastor MA, Casado MJ (2012) Use of circulation types classifications to evaluate AR4 climate models over the Euro-Atlantic region. Clim Dyn 39(7–8):2059–2077. doi: 10.1007/s00382-012-1449-2 CrossRefGoogle Scholar
  46. Pearce JL, Waller LA, Chang HH, Klein M, Mulholland JA, Sarnat JA, Sarnat SE, Strickland MJ, Tolbert PE (2014) Using self-organizing maps to develop ambient air quality classifications: a time series example. Environ Health 13(1):56. doi: 10.1186/1476-069X-13-56 CrossRefGoogle Scholar
  47. Petoukhov V, Rahmstorf S, Petri S, Schellnhuber HJ (2013) Quasiresonant amplification of planetary waves and recent Northern Hemisphere weather extremes. Proc Natl Acad Sci USA 110(14):5336–5341. doi: 10.1073/pnas.1222000110 CrossRefGoogle Scholar
  48. Purich A, Cowan T, Cai W, van Rensch P, Uotila P, Pezza A, Boschat G, Perkins S (2014) Atmospheric and Oceanic conditions associated with Southern Australian Heat Waves: a CMIP5 analysis. J Clim 27(20):7807–7829. doi: 10.1175/JCLI-D-14-00098.1 CrossRefGoogle Scholar
  49. Reusch DB, Hewitson BC, Alley RB (2005) Towards ice-core-based synoptic reconstructions of west antarctic climate with artificial neural networks. Int J Climatol 25(5):581–610. doi: 10.1002/joc.1143 CrossRefGoogle Scholar
  50. Scaife AA, Copsey D, Gordon C, Harris C, Hinton T, Keeley S, O’Neill A, Roberts M, Williams K (2011) Improved Atlantic winter blocking in a climate model. Geophys Res Lett 38(23):L23703. doi: 10.1029/2011GL049573 CrossRefGoogle Scholar
  51. Schuenemann KC, Cassano JJ (2009) Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 1. Evaluation of late 20th century simulations from IPCC models. J Geophys Res Atmos 114(D20):13. doi: 10.1029/2009JD011705 CrossRefGoogle Scholar
  52. Sheridan SC, Lee CC (2010) Synoptic climatology and the general circulation model. Prog Phys Geogr 34(1):101–109. doi: 10.1177/0309133309357012 CrossRefGoogle Scholar
  53. Sheridan SC, Lee CC (2011) The self-organizing map in synoptic climatological research. Prog Phys Geogr 35(1):109–119. doi: 10.1177/0309133310397582 CrossRefGoogle Scholar
  54. Sheridan S, Lee CC (2012) Synoptic climatology and the analysis of atmospheric teleconnections. Prog Phys Geogr 36(4):548–557. doi: 10.1177/0309133312447935 CrossRefGoogle Scholar
  55. Sturman A, Quénol H (2013) Changes in atmospheric circulation and temperature trends in major vineyard regions of New Zealand. Int J Climatol 33(12):2609–2621. doi: 10.1002/joc.3608 Google Scholar
  56. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  57. Trenberth KE (2011) Attribution of climate variations and trends to human influences and natural variability. Wiley Interdiscip Rev Clim Change 2(6):925–930. doi: 10.1002/wcc.142 CrossRefGoogle Scholar
  58. Ummenhofer CC, McIntosh PC, Pook MJ, Risbey JS (2013) Impact of surface forcing on southern hemisphere atmospheric blocking in the Australia–New Zealand sector. J Clim 26(21):8476–8494. doi: 10.1175/JCLI-D-12-00860.1 CrossRefGoogle Scholar
  59. Uotila P, Lynch AH, Cassano JJ, Cullather RI (2007) Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. J Geophys Res Atmos 112(D10):D10107. doi: 10.1029/2006JD007482 CrossRefGoogle Scholar
  60. Wapler K, James P (2015) Thunderstorm occurrence and characteristics in Central Europe under different synoptic conditions. Atmos Res 158–159:231–244. doi: 10.1016/j.atmosres.2014.07.011 CrossRefGoogle Scholar
  61. Wilby RL, Quinn NW (2013) Reconstructing multi-decadal variations in fluvial flood risk using atmospheric circulation patterns. J Hydrol 487:109–121. doi: 10.1016/j.jhydrol.2013.02.038 CrossRefGoogle Scholar
  62. Yarnal B (1993) Synoptic climatology in environmental analysis: a primer. Belhaven press, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Peter B. Gibson
    • 1
    • 2
  • Petteri Uotila
    • 3
  • Sarah E. Perkins-Kirkpatrick
    • 1
    • 2
  • Lisa V. Alexander
    • 1
    • 2
  • Andrew J. Pitman
    • 1
    • 2
  1. 1.Climate Change Research CentreUniversity of New South WalesSydneyAustralia
  2. 2.ARC Centre of Excellence for Climate System ScienceUniversity of New South WalesSydneyAustralia
  3. 3.Finnish Meteorological InstituteHelsinkiFinland

Personalised recommendations