Climate Dynamics

, Volume 47, Issue 7–8, pp 2205–2218 | Cite as

A multimodel intercomparison of resolution effects on precipitation: simulations and theory

  • Sara A. Rauscher
  • Travis A. O’Brien
  • Claudio Piani
  • Erika Coppola
  • Filippo Giorgi
  • William D. Collins
  • Patricia M. Lawston


An ensemble of six pairs of RCM experiments performed at 25 and 50 km for the period 1961–2000 over a large European domain is examined in order to evaluate the effects of resolution on the simulation of daily precipitation statistics. Application of the non-parametric two-sample Kolmorgorov–Smirnov test, which tests for differences in the location and shape of the probability distributions of two samples, shows that the distribution of daily precipitation differs between the pairs of simulations over most land areas in both summer and winter, with the strongest signal over southern Europe. Two-dimensional histograms reveal that precipitation intensity increases with resolution over almost the entire domain in both winter and summer. In addition, the 25 km simulations have more dry days than the 50 km simulations. The increase in dry days with resolution is indicative of an improvement in model performance at higher resolution, while the more intense precipitation exceeds observed values. The systematic increase in precipitation extremes with resolution across all models suggests that this response is fundamental to model formulation. Simple theoretical arguments suggest that fluid continuity, combined with the emergent scaling properties of the horizontal wind field, results in an increase in resolved vertical transport as grid spacing decreases. This increase in resolution-dependent vertical mass flux then drives an intensification of convergence and resolvable-scale precipitation as grid spacing decreases. This theoretical result could help explain the increasingly, and often anomalously, large stratiform contribution to total rainfall observed with increasing resolution in many regional and global models.


Regional climate modeling Precipitation Model resolution 



We thank two anonymous reviewers for their comments which greatly helped to improve the content, quality, and presentation of this manuscript. We acknowledge the ENSEMBLES project, funded by the European Commission’s 6th Framework Programme through Contract GOCE-CT-2003-505539. We acknowledge the climate dataset from the EU-FP6 project ENSEMBLES ( and the data providers in the ECA and D project ( This study was partly funded by the European Union FP6 project WATCH (Contract No. 036946). This research was supported by the Director, Office of Science, Office of Biological and Environmental Research of the U.S. Department of Energy Regional and Global Climate Modeling Program (RGCM) under Contract No. DE-AC02-05CH11231. We thank all of the participating modeling groups for providing the data. We thank Malcolm Haylock and Albert Klein Tank for answering questions about the ENSEMBLES observations, and Ole Bolling Christensen for data processing help.


  1. Adam JC, Clark EA, Lettenmaier DP, Wood EF (2006) Correction of global precipitation products for orographic rffects. J Clim 19:15–38. doi: 10.1175/JCLI3604.1 CrossRefGoogle Scholar
  2. Adam JC, Lettenmaier DP (2003) Adjustment of global gridded precipitation for systematic bias. J Geophys Res 108:4257–+. doi: 10.1029/2002JD002499 CrossRefGoogle Scholar
  3. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  4. Bechtold P, Bazile E, Guichard F, Mascart P, Richard E (2001) A mass–flux convection scheme for regional and global models. Q J R Meteorol Soc 127:869–886CrossRefGoogle Scholar
  5. Caldwell P (2010) California wintertime precipitation bias in regional and global climate models. J Appl Meteorol Climatol 49:2147–2158CrossRefGoogle Scholar
  6. Callies J, Ferrari R, B ohler O (2014) Transition from geostrophic turbulence to inertia-gravity waves in the atmospheric energy spectrum. Proc Natl Acad Sci USA 111:17033–17038. doi: 10.1073/pnas.1410772111 CrossRefGoogle Scholar
  7. Cho JY, Zhu Y, Newell RE, Anderson BE, Barrick JD, Gregory GL, Sachse GW, Carroll MA, Albercook GM (1999) Horizontal wavenumber spectra of winds, temperature, and trace gases during the pacific exploratory missions: 1. climatology. J Geophys Res: Atmos (1984–2012) 104:5697–5716CrossRefGoogle Scholar
  8. Davis A, Marshak A, Wiscombe W, Cahalan R (1996) Multifractal characterizations of intermittency in nonstationary geophysical signals and fields. In: Treviño G, Hardin J, Douglas B, Andreas E, Chires Associates Inc., Houghton MI (eds) Current topics in nonstationary analysis. Proceedings of the second workshop on nonstationary random processes and their applications. San Diego, California 11–12 June 1995Google Scholar
  9. Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL (2003) Daily precipitation statistics in regional climate models: evaluation and intercomparison for the European Alps. J Geophys Res 108:4124. doi: 10.1029/2002JD002287 CrossRefGoogle Scholar
  10. Giorgi F, Coppola E, Raffaele F, Diro G, Fuentes-Franco R, Giuliani G, Mamgain A, Llopart M, Mariotti L, Torma C (2014) Changes in extremes and hydroclimatic regimes in the CREMA ensemble projections. Clim Change 125:39–51. doi: 10.1007/s10584-014-1117-0 CrossRefGoogle Scholar
  11. Giorgi F, Marinucci MR (1996) an investigation of the sensitivity of simulated precipitation to the model resolution and its implications for climate studies. Mon Weather Rev 124:148–166CrossRefGoogle Scholar
  12. Gong X, Barnston AG, Ward MN (2003) The effect of spatial aggregation on the skill of seasonal precipitation forecasts. J Clim 16:3059–3071. doi: 10.1175/1520-0442(2003)016 CrossRefGoogle Scholar
  13. Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787CrossRefGoogle Scholar
  14. Gutowski WJ Jr, Decker SG, Donavon RA, Pan Z, Arritt RW, Takle ES (2003) Temporal spatial scales of observed and simulated precipitation in central U.S. climate. J Clim 16:3841–3847CrossRefGoogle Scholar
  15. Hahn RS, Mass CF (2009) The impact of positive-definite moisture advection and low-level moisture flux bias over orography. Mon Weather Rev 137:3055–3071CrossRefGoogle Scholar
  16. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res 113:20119. doi: 10.1029/2008JD010201 CrossRefGoogle Scholar
  17. Hewitt CD, Griggs DJ (2004) Ensembles-based predictions of climate changes and their impacts. EOS 85:566CrossRefGoogle Scholar
  18. Holton JR, Hakim GJ (2012) An introduction to dynamic meteorology, vol 88. Academic Press, CambridgeGoogle Scholar
  19. Iorio JP, Duffy PB, Govindasamy B, Thompson SL, Khairoutdinov M, Randall D (2004) Effects of model resolution and subgrid-scale physics on the simulation of precipitation in the continental United States. Clim Dyn 23:243–258. doi: 10.1007/s00382-004-0440-y CrossRefGoogle Scholar
  20. Jones RG, Murphy JM, Noguer M (1995) Simulation of climate change over Europe using a nested regional-climate model. I: assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449. doi: 10.1256/smsqj.52609 Google Scholar
  21. Kessler E (1969) On the distribution and continuity of water substance in atmospheric circulation. Meteorol Monogr 10:1–84Google Scholar
  22. Leung LR, Qian Y (2003) The sensitivity of precipitation and snowpack simulations to model resolution via nesting in regions of complex terrain. J Hydrometeorol 4:1025. doi: 10.1175/1525-7541(2003)004 CrossRefGoogle Scholar
  23. Li F, Collins W, Wehner M, Williamson D, Olson J (2011a) Response of precipitation extremes to idealized global warming in an aqua-planet climate model: towards a robust projection across different horizontal resolutions. Tellus A 63:876–883CrossRefGoogle Scholar
  24. Li F, Collins WD, Wehner MF, Williamson DL, Olson JG (2011b) Response of precipitation extremes to idealized global warming in an aqua-planet climate model: towards a robust projection across different horizontal resolutions. Tellus A 63:876–883CrossRefGoogle Scholar
  25. Li F, Rosa D, Collins WD, Wehner MF (2012) Super-parameterization: a better way to simulate regional extreme precipitation? J Adv Model earth Syst. doi: 10.1029/2011MS000106 Google Scholar
  26. Mearns LO, Giorgi F, McDaniel L, Brodeur CS (1995) Analysis of daily variability and diurnal range of temperature in a nested regional climate model: comparison with observations and doubled \(\text{ CO }_2\) results. Clim Dyn 11:193–209CrossRefGoogle Scholar
  27. Murphy J (1999) An evaluation of statistical and dynamical techniques for downscaling local climate. J Clim 12:2256–2284CrossRefGoogle Scholar
  28. O’Brien TA, Li F, Collins WD, Rauscher SA, Ringler TD, Taylor M, Hagos SM, Leung LR (2013) Observed scaling in clouds and precipitation and scale incognizance in regional to global atmospheric models. J Clim 26:9313–9333. doi: 10.1175/JCLI-D-13-00005.1 CrossRefGoogle Scholar
  29. Pal JS, Small EE, Eltahir EA (2000) Simulation of regional-scale water and energy budgets: representation of subgrid cloud and precipitation processes within regcm. J Geophys Res: Atmos (1984–2012) 105:29579–29594CrossRefGoogle Scholar
  30. Piani C, Weedon G, Best M, Gomes S, Viterbo P, Hagemann S, Haerter J (2010) Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. J Hydrol 395:199–215. doi: 10.1016/j.jhydrol.2010.10.024 CrossRefGoogle Scholar
  31. Rauscher S, Coppola E, Piani C, Giorgi F (2010) Resolution effects on regional climate model simulations of seasonal precipitation over Europe. Clim Dyn 35:685–711. doi: 10.1007/s00382-009-0607-7 CrossRefGoogle Scholar
  32. Rauscher SA, Ringler TD, Skamarock WC, Mirin AA (2013) Exploring a global multiresolution modeling approach using aquaplanet simulations. J Clim 26:2432–2452CrossRefGoogle Scholar
  33. Rauscher SA, Seth A, Liebmann B, Qian JH, Camargo SJ (2007) Regional climate model simulated timing and character of seasonal rains in South America. Mon Weather Rev 135:2642. doi: 10.1175/MWR3424.1 CrossRefGoogle Scholar
  34. Rivington M, Miller D, Matthews KB, Russell G, Bellocchi G, Buchan K (2008) Evaluating regional climate model estimates against site-specific observed data in the UK. Clim Change 88:157–185CrossRefGoogle Scholar
  35. Scinocca JF, McFarlane NA (2004) The variability of modeled tropical precipitation. J Atmos Sci 61:1993–2015CrossRefGoogle Scholar
  36. Seth A, Rojas M, Liebmann B, Qian JH (2004) Daily rainfall analysis for South America from a regional climate model and station observations. Geophys Res Lett. doi: 10.1029/2003GL019220 Google Scholar
  37. Sundqvist H (1978) A parameterization scheme for non-convective condensation including prediction of cloud water content. Q J R Meteorol Soc 104:677–690CrossRefGoogle Scholar
  38. Tian X, Dai A, Yang D, Xie Z (2007) Effects of precipitation-bias corrections on surface hydrology over northern latitudes. J Geophys Res 112:14101. doi: 10.1029/2007JD008420 CrossRefGoogle Scholar
  39. Tiedtke M (1989) A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon Weather Rev 117:1779. doi: 10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
  40. Uppala SM, Kallberg PW, Simmons AJ, Andrae U, Bechtold VDC, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Berg LVD, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131:2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  41. Wehner MF, Smith RL, Bala G, Duffy P (2010) The effect of horizontal resolution on simulation of very extreme US precipitation events in a global atmosphere model. Clim Dyn 34:241–247CrossRefGoogle Scholar
  42. White PW (2003) Physical processes (cy23r4). Technical Report IFS Documentation Cycle CY23r4, ECMWFGoogle Scholar
  43. Williamson D (2008) Convergence of aqua-planet simulations with increasing resolution in the Community Atmospheric Model, version 3. Tellus A 60:848–862CrossRefGoogle Scholar
  44. Williamson DL (2013) The effect of time steps and time-scales on parametrization suites. Q J R Meteorol Soc 139:548–560. doi: 10.1002/qj.1992 CrossRefGoogle Scholar
  45. Yang D, Kane D, Zhang Z, Legates D, Goodison B (2005) Bias corrections of long-term (1973–2004) daily precipitation data over the northern regions. Geophys Res Lett 32:19501–+. doi: 10.1029/2005GL024057 Google Scholar
  46. Yang Q, Leung LR, Rauscher SA, Ringler TD, Taylor MA (2014) Atmospheric moisture budget and spatial resolution dependence of precipitation extremes in aqua-planet simulations. J Clim 27:3565–3581. doi: 10.1175/JCLI-D-13-00468.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sara A. Rauscher
    • 1
  • Travis A. O’Brien
    • 2
  • Claudio Piani
    • 3
  • Erika Coppola
    • 4
  • Filippo Giorgi
    • 4
  • William D. Collins
    • 2
    • 5
  • Patricia M. Lawston
    • 1
  1. 1.Department of GeographyUniversity of DelawareNewarkUSA
  2. 2.Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  3. 3.Department of Computer Science, Mathematics and Environmental ScienceAmerican University of ParisParisFrance
  4. 4.Earth System Physics SectionInternational Centre for Theoretical PhysicsTriesteItaly
  5. 5.Earth and Planetary Sciences DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations