Climate Dynamics

, Volume 47, Issue 7–8, pp 2059–2069 | Cite as

The effect of the East Atlantic pattern on the precipitation δ18O-NAO relationship in Europe

  • L. Comas-BruEmail author
  • F. McDermott
  • M. Werner


The North Atlantic Oscillation (NAO) is known to influence precipitation δ18O (δ18Op) through its control on air temperature and on the trajectory of the westerly winds that carry moisture onto Europe during boreal winters. Hence, paleoclimate studies seeking to reconstruct the NAO can exploit the δ18O signal that is commonly preserved in natural archives such as stalagmites, ice cores, tree rings and lake sediments. However, such reconstructions should consider the uncertainties that arise from non-stationarities in the δ18Op-NAO relationship. Here, new insights into the causes of these temporal non-stationarities are presented for the European region using both observations (GNIP database) and the output of an isotope-enabled general circulation model (ECHAM5-wiso). The results show that, although the East Atlantic (EA) pattern is generally uncorrelated to δ18Op during the instrumental period, its polarity affects the δ18Op-NAO relationship. Non-stationarities in this relationship result from spatial shifts of the δ18Op-NAO correlated areas as a consequence of different NAO/EA combinations. These shifts are consistent with those reported previously for NAO-winter climate variables and the resulting non-stationarities mean that δ18O-based NAO reconstructions could be compromised if the balance of positive and negative NAO/EA states differs substantially in a calibration period compared with the period of interest in the past. The same approach has been followed to assess the relationships between δ18Op and both winter total precipitation and winter mean surface air temperature, with similar results. Crucially, this study also identifies regions within Europe where temporal changes in the NAO, air temperature and precipitation can be more robustly reconstructed using δ18O time series from natural archives, irrespective of concomitant changes in the EA.


Precipitation δ18North Atlantic Oscillation East Atlantic pattern GNIP database ECHAM5-wiso model 



We would like to thank Met Éireann (Irish Meteorological Service) for providing the sea-level pressure data from Valentia Observatory (Ireland). The authors are grateful to the journal editor, Dr. Susanna Corti, and two anonymous reviewers for their insightful comments.

Supplementary material

382_2015_2950_MOESM1_ESM.pdf (507 kb)
Supplementary material 1 (pdf 507 KB)


  1. Baldini LM, McDermott F, Foley AM, Baldini JUL (2008) Spatial variability in the European winter precipitation δ18O-NAO relationship: Implications for reconstructing NAO-mode climate variability in the Holocene. Geophys Res Lett 35:L04709. doi: 10.1029/2007GL032027 CrossRefGoogle Scholar
  2. Baldini LM, McDermott F, Baldini JUL, Fischer MJ, Möllhoff M (2010) An investigation of the controls on Irish precipitation δ18O values on monthly and event timescales. Clim Dyn 35(6):977–993. doi: 10.1007/s00382-010-0774-6 CrossRefGoogle Scholar
  3. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Weather Rev 115:1083–1126CrossRefGoogle Scholar
  4. Butzin M, Werner M, Masson-Delmotte V, Risi C, Frankenberg C, Gribanov K, Jouzel J, Zakharov VI (2014) Variations of oxygen-18 in West Siberian precipitation during the last 50 years. Atmos Chem Phys 14(11):5853–5869. doi: 10.5194/acp-14-5853-2014 CrossRefGoogle Scholar
  5. Comas-Bru L, McDermott F (2014) Impacts of the EA and SCA patterns on the European twentieth century NAOwinter climate relationship. Q J R Meteorol Soc 140(679):354–363. doi: 10.1002/qj.2158 CrossRefGoogle Scholar
  6. Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137(654):1–28. doi: 10.1002/qj.776 CrossRefGoogle Scholar
  7. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Khöler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette J-J, Park B-K, Peubey C, de Rosnay P, Tavolato C, Thépaut J-N, Vitart F (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  8. Feng X, Reddington AL, Faiia AM, Posmentier ES, Shu Y, Xu X (2007) The changes in North American atmospheric circulation patterns indicated by wood cellulose. Geology 35(2):163–166. doi: 10.1130/g22884a.1 CrossRefGoogle Scholar
  9. Fischer MJ, Mattey D (2012) Climate variability and precipitation isotope relationships in the Mediterranean region. J Geophys Res: Atmos 117(D20):D20112. doi: 10.1029/2012jd018010 CrossRefGoogle Scholar
  10. Friedman I, Harris JM, Smith GI, Johnson CA (2002) Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories. J Geophys Res: Atmos 107(D19):4400. doi: 10.1029/2001jd000565 CrossRefGoogle Scholar
  11. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: The North Atlantic Oscillation: climatic significance and environmental impact. Geophysical Monograph Series, vol 134. American Geophysical Union (AGU), Washington, pp 1–35. doi: 10.1029/GM134
  12. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  13. IAEA/WMO (2015) Global Network of Isotopes in Precipitation. The GNIP Database. Accessed 23 June 2015
  14. Jones PD, Jonsson T, Wheeler D (1997) Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int J Climatol 17:1433–1450CrossRefGoogle Scholar
  15. Jones PD, Briffa KR, Osborn TJ, Lough JM, van Ommen TD, Vinther BM, Luterbacher J, Wahl ER, Zwiers FW, Mann ME, Schmidt GA, Ammann CM, Buckley BM, Cobb KM, Esper J, Goosse H, Graham N, Jansen E, Kiefer T, Kull C, Kuettel M, Mosley-Thompson E, Overpeck JT, Riedwyl N, Schulz M, Tudhope AW, Villalba R, Wanner H, Wolff E, Xoplaki E (2009) High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19(1):3–49. doi: 10.1177/0959683608098952 CrossRefGoogle Scholar
  16. Langebroek PM, Werner M, Lohmann G (2011) Climate information imprinted in oxygen-isotopic composition of precipitation in Europe. Earth Planet Sci Lett 311(1–2):144–154. doi: 10.1016/j.epsl.2011.08.049 CrossRefGoogle Scholar
  17. Lawrence JR, Gedzelman SD, White JWC, Smiley D, Lazov P (1982) Storm trajectories in eastern US D/H isotopic composition of precipitation. Nature 296(5858):638–640. doi: 10.1038/296638a0 CrossRefGoogle Scholar
  18. Liu Z, Bowen GJ, Welker JM (2010) Atmospheric circulation is reflected in precipitation isotope gradients over the conterminous United States. J Geophys Res: Atmos 115(D22):D22120. doi: 10.1029/2010jd014175 CrossRefGoogle Scholar
  19. Liu Z, Bowen GJ, Welker JM, Yoshimura K (2013) Winter precipitation isotope slopes of the contiguous USA and their relationship to the Pacific/North American (PNA) pattern. Clim Dyn 41(2):403–420. doi: 10.1007/s00382-012-1548-0 CrossRefGoogle Scholar
  20. Luterbacher J, Xoplaki E, Dietrich D, Rickli R, Jacobeit J, Beck C, Gyalistras D, Schmutz C, Wanner H (2002) Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim Dyn 18(7):545–561. doi: 10.1007/s00382-001-0196-6 CrossRefGoogle Scholar
  21. Mitchell TD, Jones PD (2005) An improved method for constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712. doi: 10.1002/joc.1181 CrossRefGoogle Scholar
  22. Moore GWK, Renfrew IA, Pickart RS (2013) Multidecadal mobility of the North Atlantic Oscillation. J Clim 26(8):2453–2466. doi: 10.1175/jcli-d-12-00023.1 CrossRefGoogle Scholar
  23. Moore GWK, Renfrew IA (2012) Cold European winters: interplay between the NAO and the East Atlantic mode. Atmos Sci Lett 13:1–8. doi: 10.10025/asl.356 CrossRefGoogle Scholar
  24. Raible CC, Lehner F, González-Rouco JF, Fernández-Donado L (2014) Changing correlation structures of the northern hemisphere atmospheric circulation from 1000 to 2100 AD. Clim Past 10(2):537–550. doi: 10.5194/cp-10-537-2014 CrossRefGoogle Scholar
  25. Rodriguez-Puebla C, Encinas AH, Nieto S, Garmeinda J (1998) Spatial and temporal patterns of annual precipitation variability over the Iberian peninsula. Int J Climatol 18:299–316. doi: 10.1002/(SICI)1097-0088(19980315)18:3<299::AID-JOC247>3.0.CO;2-L CrossRefGoogle Scholar
  26. Roeckner E, Bäuml G, Bonaventura L, Borokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. PART 1: Model description. Report no 349. Max-Plank-Insitut für Meteorologie, HamburgGoogle Scholar
  27. Roeckner E, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kornblueh L, Manzini E, Schlese U, Schulzweida U (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19(16):3771–3791. doi: 10.1175/JCLI3824.1 CrossRefGoogle Scholar
  28. Rozanski K, Araguás-Araguás L, Gonfiantini R (1993) Isotopic patterns in modern global precipitation. In: Geophysical Monograph 78. Climate Change in Continental Isotopic Records 1-36. AGU, Washington, DC, doi: 10.1029/GM078p0001
  29. Smith MA, Hollander DJ (1999) Historical linkage between atmospheric circulation patterns and the oxygen isotopic record of sedimentary carbonates from Lake Mendota, Wisconsin, USA. Geology 27(7):589–592. doi: 10.1130/0091-7613(1999)027<0589:hlbacp>;2 CrossRefGoogle Scholar
  30. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the medieval climate anomaly. Science 324:78–80. doi: 10.1126/science.1166349 CrossRefGoogle Scholar
  31. Uppala SM, Kållberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, Van De Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Hólm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, Mcnally AP, Mahfouf J-F, Morcrette J-J, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) The ERA-40 re-analysis. Q J R Meteorol Soc 131(612):2961–3012. doi: 10.1256/qj.04.176 CrossRefGoogle Scholar
  32. Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812. doi: 10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 CrossRefGoogle Scholar
  33. Wanner H, Brönnimann S, Casty C, Gyalistras D, Lutherbacher J, Schmutz CJ, Stephenson DB, Xoplaki E (2001) North Atlantic Oscillation: concepts and studies. Surv Geophys 22:321–382. doi: 10.1023/A:1014217317898 CrossRefGoogle Scholar
  34. Werner M, Langebroek PM, Carlsen T, Herold M, Lohmann G (2011) Stable water isotopes in the ECHAM5 general circulation model: toward high-resolution isotope modeling on a global scale. J Geophys Res-Atmos 116:14. doi: 10.1029/2011jd015681 CrossRefGoogle Scholar
  35. Woollings T, Hannachi AL, Hoskins B (2010) Variability of the North Atlantic eddy-driven jet stream. Q J R Meteorol Soc 136(649):856–868. doi: 10.1002/qj.625 CrossRefGoogle Scholar
  36. Woollings T, Blackburn M (2012) The North Atlantic jet stream under climate change and its relation to the NAO and EA patterns. J Clim 25(3):886–902. doi: 10.1175/jcli-d-11-00087.1 CrossRefGoogle Scholar
  37. Yurtsever Y (1975) Worldwide survey of isotopes in precipitation. IAEA report, ViennaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Earth SciencesUniversity College DublinDublin 4Ireland
  2. 2.UCD Earth InstituteUniversity College DublinDublin 4Ireland
  3. 3.Division Climate Science - Paleoclimate Dynamics, Helmholtz Centre for Polar and Marine ResearchAlfred Wegener InstituteBremerhavenGermany

Personalised recommendations