Advertisement

Climate Dynamics

, Volume 47, Issue 5–6, pp 1827–1844 | Cite as

Summer SST anomalies in the Indian Ocean and the seasonal timing of ENSO decay phase

  • Rongcai RenEmail author
  • Shuyue Sun
  • Yang Yang
  • Qian Li
Article

Abstract

ENSO affects the tropical Indian Ocean (TIO) SST in winter-spring in ENSO decay years through an ENSO-induced ‘atmospheric-bridge’ and subsequent air-sea coupling processes. The interdecadal delay of El Niño decay phase has been related to a warming change in the summer TIO since 1970s. A physical linkage between the summer SST anomalies over the TIO and the timing of ENSO decay phase is however still unclear. This study uses multi-source data to distinguish ‘later-decay’ from ‘normal-decay’ El Niño/La Niña events, and performs diagnostic analysis of the changes in various thermodynamic and dynamic processes due to later-decay ENSO for quantifying the partial contribution by each of these processes to the summer SST changes over the TIO. The results show that, at both the interannual and interdecadal timescales, the significant warmer and colder SST anomalies in the spring TIO in later-decay El Niño and La Niña years respectively can persist into summer. Most of the ENSO-induced atmospheric-bridge-related processes contribute positively to the TIO SST changes in summer due to later-decay of ENSO, as they do in spring during normal-delay ENSO year. The exceptions are the surface wind-evaporation-mechanism and sensible heat-flux anomalies in summer, which always contribute negatively to the summer SST anomalies over most parts of the TIO. The negative contributions from these two processes in summer exist no matter whether there is a weakening or strengthening surface wind due to later-decay of ENSO events. Generally, the presence of five later-decay El Niño events after the 1970s is mainly responsible for the observed interdecadal summer TIO warming in recent decades.

Keywords

SST anomalies Summer Indian Ocean Seasonal timing of ENSO decay phase 

Notes

Acknowledgments

This work was jointly supported by a Chinese Academy of Sciences project (XDA11010402), research grant from the National Science Foundation of China (41575041, 91437105) and the China Meteorological Administration Special Public Welfare Research Fund (GYHY201406001).

References

  1. Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on air-sea interaction over the global oceans. J Clim 15:2205–2231. doi: 10.1175/1520-0442(2002)015<2205:TABTIO>2.0.CO;2 CrossRefGoogle Scholar
  2. Allan RJ, Lindesay JA, Reason CJC (1995) Multidecadal variability in the climate system over the Indian-ocean region during the austral summer. J Clim 8:1853–1873CrossRefGoogle Scholar
  3. An SI, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055CrossRefGoogle Scholar
  4. Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Nino. J Clim 18:302–319. doi: 10.1175/Jcli-3268.1 CrossRefGoogle Scholar
  5. Ashok K, Behera SK, Rao SA, Weng HY (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C1107. doi: 10.1029/2006JC003798 CrossRefGoogle Scholar
  6. Barnett TP, Pierce DW, AchutaRao KM, Gleckler PJ, Santer BD, Gregory JM, Washington WM (2005) Penetration of human-induced warming into the world’s oceans. Science 309:284–287. doi: 10.1126/science.1112418 CrossRefGoogle Scholar
  7. Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Proceedings of 8th symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surfaceGoogle Scholar
  8. Cadet DL (1985) The Southern oscillation over the Indian-Ocean. Int J Climatol 5:189–212CrossRefGoogle Scholar
  9. Cai M, Lu JH (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part II: method demonstrations and comparisons. Clim Dyn 32:887–900. doi: 10.1007/s00382-008-0424-4 CrossRefGoogle Scholar
  10. Cai M, Tung KK (2012) Robustness of dynamical feedbacks from radiative forcing: 2 % solar versus 2 × CO2 experiments in an idealized GCM. J Atmos Sci 69:2256–2271. doi: 10.1175/Jas-D-11-0117.1 CrossRefGoogle Scholar
  11. Chiu LS, Newell RE (1983) Variations of zonal mean sea-surface temperature and large-scale air sea interaction. Q J R Meteorol Soc 109:153–168. doi: 10.1002/qj.49710945907 CrossRefGoogle Scholar
  12. Chowdary JS, Xie S-P, Tokinaga H, Okumura YM, Kubota H, Johnson N, Zheng X-T (2012) Interdecadal variations in ENSO teleconnection to the Indo-Western Pacific for 1870–2007. J Clim 25:1722–1744. doi: 10.1175/jcli-d-11-00070.1 CrossRefGoogle Scholar
  13. Cole JE, Dunbar RB, McClanahan TR, Muthiga NA (2000) Tropical Pacific forcing of decadal SST variability in the western Indian Ocean over the past two centuries. Science 287:617–619. doi: 10.1126/science.287.5453.617 CrossRefGoogle Scholar
  14. Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. doi: 10.1002/QJ.828 CrossRefGoogle Scholar
  15. Deng Y, Park T-W, Cai M (2013) Radiative and dynamical forcing of the surface and atmospheric temperature anomalies associated with the Northern Annular Mode. J Clim 26:5124–5138. doi: 10.1175/JCLI-D-12-00431.1 CrossRefGoogle Scholar
  16. Deser C, Alexander MA, Xie S-P, Phillips AS (2010) Sea surface temperature variability: patterns and mechanisms. Annu Rev Mar Sci 2:115–143. doi: 10.1146/annurev-marine-120408-151453 CrossRefGoogle Scholar
  17. Du Y, Xie SP, Huang G, Hu KM (2009) Role of air-Sea interaction in the long persistence of El Niño-Induced north Indian ocean warming. J Clim 22:2023–2038. doi: 10.1175/2008jcli2590.1 CrossRefGoogle Scholar
  18. Fedorov AV, Philander SG (2000) Is El Niño changing? Science 288:1997–2002. doi: 10.1126/science.288.5473.1997 CrossRefGoogle Scholar
  19. Huang BH, Kinter JL (2002) Interannual variability in the tropical Indian Ocean. J Geophys Res. doi: 10.1029/2001jc001278 Google Scholar
  20. Ihara C, Kushnir Y, Cane MA (2008) Warming trend of the Indian Ocean SST and Indian Ocean dipole from 1880 to 2004. J Clim 21:2035–2046. doi: 10.1175/2007jcli1945.1 CrossRefGoogle Scholar
  21. Ishii M, Shouji A, Sugimoto S, Matsumoto T (2005) Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using iCOADS and the KOBE collection. Int J Climatol 25:865–879. doi: 10.1002/Joc.1169 CrossRefGoogle Scholar
  22. Julian PR, Chervin RM (1978) Study of southern oscillation and walker circulation phenomenon. Mon Weather Rev 106:1433–1451. doi: 10.1175/1520-0493(1978)106<1433:asotso>2.0.co;2 CrossRefGoogle Scholar
  23. Kirtman BP, Schopf PS (1998) Decadal variability in ENSO predictability and prediction. J Clim 11:2804–2822. doi: 10.1175/1520-0442(1998)011<2804:dviepa>2.0.co;2 CrossRefGoogle Scholar
  24. Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932. doi: 10.1175/1520-0442(1999)012<0917:rsstvd>2.0.co;2 CrossRefGoogle Scholar
  25. Kobayashi S et al (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan Ser II 93:5–48. doi: 10.2151/jmsj.2015-001 CrossRefGoogle Scholar
  26. Kug JS, Kang IS (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801CrossRefGoogle Scholar
  27. Lau NC, Nath MJ (1996) The role of the “atmospheric bridge” in linking tropical Pacific ENSO events to extratropical SST anomalies. J Clim 9:2036–2057. doi: 10.1175/1520-0442(1996)009<2036:trotbi>2.0.co;2 CrossRefGoogle Scholar
  28. Lau NC, Nath MJ (2003) Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J Clim 16:3–20. doi: 10.1175/1520-0442(2003)016<0003:Aoviti>2.0.Co;2 CrossRefGoogle Scholar
  29. Lau KM, Weng HY (1999) Interannual, decadal-interdecadal, and global warming signals in sea surface temperature during 1955–1997. J Clim 12:1257–1267. doi: 10.1175/1520-0442(1999)012<1257:idiagw>2.0.co;2 CrossRefGoogle Scholar
  30. Li S, Perlwitz J, Hoerling MP, Chen X (2010) Opposite annular responses of the Northern and Southern hemispheres to Indian Ocean warming. J Clim 23:3720–3738. doi: 10.1175/2010jcli3410.1 CrossRefGoogle Scholar
  31. Li Q, Ren RC, Cai M, Wu GX (2012) Attribution of the summer warming since 1970s in Indian Ocean basin to the inter-decadal change in the seasonal timing of El Niño decay phase. Geophys Res Lett. doi: 10.1029/2012gl052150 Google Scholar
  32. Lu JH, Cai M (2009) A new framework for isolating individual feedback processes in coupled general circulation climate models. Part I formulation. Clim Dyn 32:873–885. doi: 10.1007/s00382-008-0425-3 CrossRefGoogle Scholar
  33. Lu JH, Cai M (2010) Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Clim Dyn 34:669–687. doi: 10.1007/s00382-009-0673-x CrossRefGoogle Scholar
  34. Marathe S, Ashok K, Swapna P, Sabin TP (2015) Revisiting El Niño Modokis. Clim Dyn. doi: 10.1007/s00382-015-2555-8 Google Scholar
  35. Masumoto Y, Meyers G (1998) Forced Rossby waves in the southern tropical Indian Ocean. J Geophys Res 103:27589–27602. doi: 10.1029/98jc02546 CrossRefGoogle Scholar
  36. Miller AJ, Cayan DR, Barnett TP, Graham NE, Oberhuber JM (1994) Interdecadal variability of the Pacific-ocean—model response to observed heat-flux and wind stress anomalies. Clim Dyn 9:287–302. doi: 10.1007/bf00204744 CrossRefGoogle Scholar
  37. Nigam S, Shen HS (1993) Structure of oceanic and atmospheric low-frequency variability over the tropical Pacific and Indian Oceans. Part I: Coads observations. J Clim 6:657–676. doi: 10.1175/1520-0442(1993)006<0657:sooaal>2.0.co;2 CrossRefGoogle Scholar
  38. Oort AH, Yienger JJ (1996) Observed interannual variability in the Hadley circulation and its connection to ENSO. J Clim 9:2751–2767. doi: 10.1175/1520-0442(1996)009<2751:oivith>2.0.co;2 CrossRefGoogle Scholar
  39. Perigaud C, Delecluse P (1993) Interannual sea-level variations in the tropical Indian-Ocean from geosat and shallow-water simulations. J Phys Oceanogr 23:1916–1934. doi: 10.1175/1520-0485(1993)023<1916:Islvit>2.0.Co;2 CrossRefGoogle Scholar
  40. Pierce DW, Barnett TP, AchutaRao KM, Gleckler PJ, Gregory JM, Washington WM (2006) Anthropogenic warming of the oceans: observations and model results. J Clim 19:1873–1900. doi: 10.1175/jcli3723.1 CrossRefGoogle Scholar
  41. Rasmusson EM, Carpenter TH (1982) Variations in tropical sea-surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384. doi: 10.1175/1520-0493(1982)110<0354:vitsst>2.0.co;2 CrossRefGoogle Scholar
  42. Rayner NA et al (2006) Improved analyses of changes and uncertainties in sea surface temperature measured in situ since the mid-nineteenth century: the HadSST2 dataset. J Clim 19(3):446–469CrossRefGoogle Scholar
  43. Reason CJC, Allan RJ, Lindesay JA, Ansell TJ (2000) ENSO and climatic signals across the Indian Ocean basin in the global context: part I, interannual composite patterns. Int J Climatol 20:1285–1327CrossRefGoogle Scholar
  44. Ren RC, Yang Y, Cai M, Rao J (2015) Understanding the systematic air temperature biases in a coupled climate system model through a process-based decomposition method. Clim Dyn 45:1801–1817. doi: 10.1007/s00382-014-2435-7 CrossRefGoogle Scholar
  45. Saha S et al (2006) The NCEP climate forecast system. J Clim 19:3483–3517. doi: 10.1175/jcli3812.1 CrossRefGoogle Scholar
  46. Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363. doi: 10.1038/43855 Google Scholar
  47. Terray P, Dominiak S (2005) Indian Ocean sea surface temperature and El Niño -southern oscillation: a new perspective. J Clim 18:1351–1368. doi: 10.1175/jcli3338.1 CrossRefGoogle Scholar
  48. Tokinaga H, Tanimoto Y (2004) Seasonal transition of SST anomalies in the tropical Indian ocean during El Niño and Indian Ocean dipole years. J Meteorol Soc Japan 82:1007–1018. doi: 10.2151/jmsj.2004.1007 CrossRefGoogle Scholar
  49. Weare BC (1979) A statistical study of the relationships between ocean surface temperatures and the Indian monsoon. J Atmos Sci 36:2279–2291. doi: 10.1175/1520-0469(1979)036<2279:ASSOTR>2.0.CO;2 CrossRefGoogle Scholar
  50. Wu G, Meng W (1998) Gearing between the Indo-monsoon circulation and the Pacific—Walker Circulation and the ENSO. Part I: Data Analyses. Chinese J Atmos Sci 22(4):470–480. doi: 10.3878/j.issn.1006-9895.1998.04.09 (in Chinese) Google Scholar
  51. Wu R, Kirtman BP, Krishnamurthy V (2008) An asymmetric mode of tropical Indian Ocean rainfall variability in boreal spring. J Geophys Res. doi: 10.1029/2007jd009316 Google Scholar
  52. Xie SP, Saito K (2001) Formation and variability of a northerly ITCZ in a hybrid coupled AGCM: continental forcing and oceanic-atmospheric feedback. J Clim 14:1262–1276. doi: 10.1175/1520-0442(2001)014<1262:favoan>2.0.co;2 CrossRefGoogle Scholar
  53. Xie SP, Annamalai H, Schott FA, McCreary JP (2002) Structure and mechanisms of South Indian Ocean climate variability. J Clim 15:864–878. doi: 10.1175/1520-0442(2002)015<0864:Samosi>2.0.Co;2 CrossRefGoogle Scholar
  54. Xie SP, Hu KM, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian Ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22:730–747. doi: 10.1175/2008jcli2544.1 CrossRefGoogle Scholar
  55. Xie S-P, Du Y, Huang G, Zheng X-T, Tokinaga H, Hu K, Liu Q (2010) Decadal shift in El Niño influences on Indo-Western Pacific and East Asian climate in the 1970 s. J Clim 23:3352–3368. doi: 10.1175/2010jcli3429.1 CrossRefGoogle Scholar
  56. Yang JL, Liu QY, Xie SP, Liu ZY, Wu LX (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett. doi: 10.1029/2006gl028571 Google Scholar
  57. Yang Y, Ren R, Cai M, Rao J (2015) Attributing analysis on the model bias in surface temperature in the climate system model FGOALS-s2 through a process-based decomposition method. Adv Atmos Sci 32:457–469. doi: 10.1007/s00376-014-4061-z CrossRefGoogle Scholar
  58. Yu WD, Xiang BQ, Liu L, Liu N (2005) Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophys Res Lett. doi: 10.1029/2005gl024327 Google Scholar
  59. Zhang RH, Busalacchi AJ (2005) Interdecadal change in properties of El Niño -Southern Oscillation in an intermediate coupled model. J Clim 18:1369–1380. doi: 10.1175/jcli3340.1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Rongcai Ren
    • 1
    • 2
    Email author
  • Shuyue Sun
    • 1
    • 3
  • Yang Yang
    • 1
    • 3
  • Qian Li
    • 1
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters and KLMENanjing University of Information Science and TechnologyNanjingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations