Advertisement

Climate Dynamics

, Volume 47, Issue 5–6, pp 1613–1628 | Cite as

Evaluating regional climate models for simulating sub-daily rainfall extremes

  • Virginia Edith Cortés-Hernández
  • Feifei Zheng
  • Jason Evans
  • Martin Lambert
  • Ashish Sharma
  • Seth Westra
Article

Abstract

Sub-daily rainfall extremes are of significant societal interest, with implications for flash flooding and the design of urban stormwater systems. It is increasingly recognised that extreme subdaily rainfall will intensify as a result of global temperature increases, with regional climate models (RCMs) representing one of the principal lines of evidence on the likely magnitude and spatiotemporal characteristics of these changes. To evaluate the ability of RCMs to simulate subdaily extremes, it is common to compare the simulated statistical characteristics of the extreme rainfall events with those from observational records. While such analyses are important, they provide insufficient insight into whether the RCM reproduces the correct underlying physical processes; in other words, whether the model “gets the right answers for the right reasons”. This paper develops a range of metrics to assess the performance of RCMs in capturing the physical mechanisms that produce extreme rainfall. These metrics include the diurnal and seasonal cycles, relationship between rainfall intensity and temperature, temporal scaling, and the spatial structure of extreme rainfall events. We evaluate a high resolution RCM—the Weather Research Forecasting model—over the Greater Sydney region, using three alternative parametrization schemes. The model shows consistency with the observations for most of the proposed metrics. Where differences exist, these are dependent on both the rainfall duration and model parameterization strategy. The use of physically meaningful performance metrics not only enhances the confidence in model simulations, but also provides better diagnostic power to assist with future model improvement.

Keywords

Regional climate models Climate model evaluation Sub-daily extreme rainfall Weather Research Forecasting (WRF) model Greater Sydney region 

References

  1. Ahern M, Kovats RS, Wilkinson P, Few R, Matthies F (2005) Global health impacts of floods: epidemiologic evidence. Epidemiol Rev 27:36–46CrossRefGoogle Scholar
  2. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylha K, Koffi B, Palutikof JP, Scholl R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 81:71–95. doi: 10.1007/s10584-006-9226-z CrossRefGoogle Scholar
  3. Berg P, Moseley C, Haerter JO (2013) Strong increase in convective precipitation in response to higher temperatures. Nat Geosci. doi: 10.1038/NGEO1731 Google Scholar
  4. Buonomo E, Jones R, Huntingford C, Hannaford J (2007) On the robustness of changes in extreme precipitation over Europe from two high resolution climate change simulations. Q J R Meteorol Soc 133(622):65–81. doi: 10.1002/qj.13 CrossRefGoogle Scholar
  5. Castro L, Pielke A Sr, Adegoke J (2007) Investigation of the summer climate of the contiguous U.S. and Mexico using the regional atmospheric modeling system (RAMS). Part I: model climatology (1950–2002). J Clim 20:3866–3887. doi: 10.1175/JCLI4211.1 CrossRefGoogle Scholar
  6. Chen J, Brissette FP, Chaumont D, Braun M (2013) Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour Res 49(7):4187–4205CrossRefGoogle Scholar
  7. Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the community climate system model. J Clim 17:930–951CrossRefGoogle Scholar
  8. Delworth TL, Zeng F (2014) Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat Geosci 7(8):583–587. doi: 10.1038/ngeo2201 CrossRefGoogle Scholar
  9. Evans JP, McCabe MF (2010) Regional climate simulation over Australia’s Murray-Darling basin: a multitemporal assessment. J Geophys Res 115(D14):D14114. doi: 10.1029/2010JD013816 CrossRefGoogle Scholar
  10. Evans J, Westra S (2012) Investigating the mechanisms of diurnal rainfall variability using a regional climate model. J Clim 25(20):7232–7247CrossRefGoogle Scholar
  11. Evans J, Ekström M, Ji F (2012) Evaluating the performance of a WRF physics ensemble over South-East Australia. Clim Dyn 39(6):1241–1258. doi: 10.1007/s00382-011-1244-5 CrossRefGoogle Scholar
  12. Evans JP, Ji F, Abramowitz G, Ekström M (2013) Optimally choosing small ensemble members to produce robust climate simulations. Environ Res Lett 8:044050. doi: 10.1088/1748-9326/8/4/044050 CrossRefGoogle Scholar
  13. Evans JP, Ji F, Lee C et al (2014) Design of a regional climate modelling projection ensemble experiment—NARCliM. Geosci Model Dev 7:621–629. doi: 10.5194/gmd-7-621-2014 CrossRefGoogle Scholar
  14. Gilmore JB, Evans JP, Sherwood SC, Ekstrom M, Ji F (2015) Extreme precipitation in WRF for the Newcastle East Coast Low of 2007. Theor Appl Climatol. doi: 10.1007/s00704-015-1551-6 Google Scholar
  15. Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J (2013) Future flood losses in major coastal cities. Nat Clim Change 3(9):802–806. doi: 10.1038/nclimate1979 CrossRefGoogle Scholar
  16. Hardwick-Jones R, Westra S, Sharma A (2010) Observed relationships between extreme sub-daily precipitation, surface temperature and relative humidity. Geophys Res Lett. doi: 10.1029/2010GL045081 Google Scholar
  17. Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341CrossRefGoogle Scholar
  18. IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, CambridgeGoogle Scholar
  19. Janjic Z (1994) The step-mountain eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Weather Rev 122:927–945CrossRefGoogle Scholar
  20. Ji F, Ekström M, Evans JP, Teng J (2014) Evaluating rainfall patterns using physics scheme ensembles from a regional atmospheric model. Theor Appl Climatol 115:297–304. doi: 10.1007/s00704-013-0904-2 CrossRefGoogle Scholar
  21. Kain JS (2004) The Kain–Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181CrossRefGoogle Scholar
  22. Kalnay E, Kanamitsu M, Ristler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77(3):437–471CrossRefGoogle Scholar
  23. Kendon EJ, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Senior CA (2014) Heavier summer downpours with climate change revealed by weather forecast resolution model. Nat Clim Change 4(7):570–576. doi: 10.1038/nclimate2258 CrossRefGoogle Scholar
  24. Kirchner JW (2006) Getting the right answers for the right reasons: linking measurements, analyses, and models to advance the science of hydrology. Water Resour Res. doi: 10.1029/2005WR004362 Google Scholar
  25. Langhans W, Schmidli J, Fuhrer O, Bieri S, Schar C (2013) Long-term simulations of thermally driven flows and orographic convection at convection-parameterizing and cloud-resolving resolutions. J Appl Meteorol Climatol 52:1490–1510CrossRefGoogle Scholar
  26. Lenderink G, van Meijgaard E (2008) Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat Geosci 1:511–514CrossRefGoogle Scholar
  27. Lovejoy S, Mandelbrot B (1985) Fractal properties of rain, and a fractal model. Tellus A 37(3):209–232CrossRefGoogle Scholar
  28. Mandapaka P, Qin X (2014) A large sample investigation of temporal scale-invariance in rainfall over the tropical urban island of Singapore. Theor Appl Climatol. doi: 10.1007/s00704-014-1317-6 Google Scholar
  29. Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Clim 26(6):2137–2143. doi: 10.1175/JCLI-D-12-00821.1 CrossRefGoogle Scholar
  30. Maraun D, Osborn T, Rust H (2011) The influence of synoptic airflow on UK daily precipitation extremes. Part I: observed spatio-temporal relationships. Clim Dyn 36(1–2):261–275. doi: 10.1007/s00382-009-0710-9 CrossRefGoogle Scholar
  31. Mascaro G, Vivoni ER, Gochis DJ, Watts CJ, Rodriguez JC (2014) Temporal downscaling and statistical analysis of rainfall across a topographic transect in Northwest Mexico. J Appl Meteorol Climatol 53(4):910–927. doi: 10.1175/JAMC-D-13-0330.1 CrossRefGoogle Scholar
  32. Nesbitt SW, Zipser EJ (2003) The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J Clim 16:1456–1475CrossRefGoogle Scholar
  33. Paschalis A, Molnar P, Fatichi S, Burlando P (2013) A stochastic model for high-resolution space-time precipitation simulation. Water Resour Res 49(12):8400–8417. doi: 10.1002/2013WR014437 CrossRefGoogle Scholar
  34. Rocheta E, Evans JP, Sharma A (2014) Assessing atmospheric bias correction for dynamical consistency using potential vorticity. Environ Res Lett 9(12):124010CrossRefGoogle Scholar
  35. Schindler A, Maraun D, Luterbacher J (2012) Validation of the present day annual cycle in heavy precipitation over the British Islands simulated by 14 RCMs. J Geophys Res Atmos 117(D18):D18107. doi: 10.1029/2012JD017828 CrossRefGoogle Scholar
  36. Schlather M, Tawn JA (2003) A dependence measure for multivariate and spatial extreme values: properties and inference. Biometrika 90(1):139–156. doi: 10.1093/biomet/90.1.139 CrossRefGoogle Scholar
  37. Skamarock W, Klemp J, Dudhia J et al (2008) A description of the advanced research WRF version 3. Mon Wea Rev 88:7–25Google Scholar
  38. Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217CrossRefGoogle Scholar
  39. Tripathi OP, Dominguez F (2013) Effects of spatial resolution in the simulation of daily and subdaily precipitation in the southwestern US. J Geophys Res Atmos 118(14):7591–7605CrossRefGoogle Scholar
  40. van Pelt SC, Beersma JJ, Buishand TA, van den Hurk BJJM, Kabat P (2012) Future changes in extreme precipitation in the Rhine basin based on global and regional climate model simulations. Hydrol Earth Syst Sci 16(12):4517–4530. doi: 10.5194/hess-16-4517-2012 CrossRefGoogle Scholar
  41. Veneziano D, Lepore C (2012) The scaling of temporal rainfall. Water Resour Res 48(8):W08516. doi: 10.1029/2012wr012105 CrossRefGoogle Scholar
  42. Wang J, Kotamarthi VR (2014) Downscaling with a nested regional climate model in near-surface fields over the contiguous United States. J Geophys Res Atmos. doi: 10.1002/2014JD021696 Google Scholar
  43. Wang J, Swati FNU, Stein ML, Kotamarthi VR (2015) Model performance in spatiotemporal patterns of precipitation: new methods for identifying value added by a regional climate model. J Geophys Res Atmos. doi: 10.1002/2014JD022434 Google Scholar
  44. Westra S, Alexander LV, Zwiers FW (2013a) Global increasing trends in annual maximum daily precipitation. J Clim 26:3904–3918. doi: 10.1175/JCLI-D-12-00502.1 CrossRefGoogle Scholar
  45. Westra S, Evans JP, Mehrotra R, Sharma A (2013b) A conditional disaggregation algorithm for generating fine time-scale rainfall data in a warmer climate. J Hydrol 479:86–99. doi: 10.1016/j.jhydrol.2012.11.033 CrossRefGoogle Scholar
  46. Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts NM (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys. doi: 10.1002/2014RG000464 Google Scholar
  47. Zheng F, Westra S, Leonard M (2015a) Opposing local precipitation extremes. Nat Clim Change 5(5):389–390. doi: 10.1038/nclimate2579 CrossRefGoogle Scholar
  48. Zheng F, Thibaud E, Westra S, Leonard M (2015b) Assessing the performance of the independence method in modelling spatial extreme rainfall. Water Resour Res. doi: 10.1002/2015WR016893 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Virginia Edith Cortés-Hernández
    • 1
  • Feifei Zheng
    • 2
  • Jason Evans
    • 3
  • Martin Lambert
    • 1
  • Ashish Sharma
    • 4
  • Seth Westra
    • 1
  1. 1.School of Civil, Environmental and Mining EngineeringUniversity of AdelaideAdelaideAustralia
  2. 2.College of Civil Engineering and ArchitectureZhejiang UniversityHangzhouChina
  3. 3.Climate Change Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyAustralia
  4. 4.School of Civil and Environmental EngineeringUniversity of New South WalesSydneyAustralia

Personalised recommendations