Climate Dynamics

, Volume 47, Issue 3–4, pp 1263–1284 | Cite as

Use of A-train satellite observations (CALIPSO–PARASOL) to evaluate tropical cloud properties in the LMDZ5 GCM

  • D. Konsta
  • J.-L. Dufresne
  • H. Chepfer
  • A. Idelkadi
  • G. Cesana


The evaluation of key cloud properties such as cloud cover, vertical profile and optical depth as well as the analysis of their intercorrelation lead to greater confidence in climate change projections. In addition, the comparison between observations and parameterizations of clouds in climate models is improved by using collocated and instantaneous data of cloud properties. Simultaneous and independent observations of the cloud cover and its three-dimensional structure at high spatial and temporal resolutions are made possible by the new space-borne multi-instruments observations collected with the A-train. The cloud cover and its vertical structure observed by CALIPSO and the visible directional reflectance (a surrogate for the cloud optical depth) observed by PARASOL, are used to evaluate the representation of cloudiness in two versions of the atmospheric component of the IPSL-CM5 climate model (LMDZ5). A model-to-satellite approach, applying the CFMIP Observation Simulation Package (COSP), is used to allow a quantitative comparison between model results and observations. The representation of clouds in the two model versions is first evaluated using monthly mean data. This classical approach reveals biases of different magnitudes in the two model versions. These biases consist of (1) an underestimation of cloud cover associated to an overestimation of cloud optical depth, (2) an underestimation of low- and mid-level tropical clouds and (3) an overestimation of high clouds. The difference in the magnitude of these biases between the two model versions clearly highlights the improvement of the amount of boundary layer clouds, the improvement of the properties of high-level clouds, and the improvement of the simulated mid-level clouds in the tropics in LMDZ5B compared to LMDZ5A, due to the new convective, boundary layer, and cloud parametrizations implemented in LMDZ5B. The correlation between instantaneous cloud properties allows for a process-oriented evaluation of tropical oceanic clouds. This process-oriented evaluation shows that the cloud population characterized by intermediate values of cloud cover and cloud reflectance can be split in two groups of clouds when using monthly mean values of cloud cover and cloud reflectance: one group with low to intermediate values of the cloud cover, and one group with cloud cover close to one. The precise determination of cloud height allows us to focus on specific types of clouds (i.e. boundary layer clouds, high clouds, low-level clouds with no clouds above). For low-level clouds over the tropical oceans, the relationship between instantaneous values of the cloud cover and of the cloud reflectance reveals a major bias in the simulated liquid water content for both model versions. The origin of this bias is identified and possible improvements, such as considering the sub-grid heterogeneity of cloud properties, are investigated using sensitivity experiments. In summary, the analysis of the relationship between different instantaneous and collocated variables allows for process-oriented evaluations. These evaluations may in turn help to improve model parameterizations, and may also help to bridge the gap between model evaluation and model development.


Clouds A-train LMDZ5 GCM 



The authors would like to thank CNES and NASA for the PARASOL and CALIPSO data, CGTD/ICARE for the collocation of the CALIOP L1 and PARASOL L1 datasets, Climserv/ICARE for the data access and for the computing resources. This research was partly supported by the FP7 European projects EUCLIPSE (# 244067) and IS-ENES2 (#312979). We also thank D. Tanré and F. Ducos for providing PARASOL monodirectional reflectance observations, Michel Viollier for fruitful discussions on CERES and PARASOL data, Michel Capderou for his useful comment on the A-train orbit, J. Riedi for its help to built Fig. 1a, and S. Bony for useful discussions. We strongly acknowledge the editor and the reviewers for their numerous suggestions that have helped us to improve the manuscript.


  1. Barker HW, Wielicki BA (1997) Parameterizing grid-averaged longwave fluxes for inhomogeneous marine boundary layer clouds. J Atmos Sci 54(24):2785–2798CrossRefGoogle Scholar
  2. Bodas-Salcedo A, Webb MJ, Bony S, Chepfer H, Dufresne J-L, Klein SA, Zhang Y, Marchand R, Haynes JM, Pincus R, John VO (2011) COSP: satellite simulation software for model assessment. Bull Am Meteorol Soc. doi: 10.1175/2011BAMS2856.1 Google Scholar
  3. Bony S, Dufresne J-L (2005) Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys Res Lett 32(20):L20806. doi: 10.1029/2005GL023851 CrossRefGoogle Scholar
  4. Bony S, Emanuel KA (2001) A parameterization of the cloudiness associated with cumulus convection: evaluation using TOGA COARE data. J Atmos Sci 58:3158–3183CrossRefGoogle Scholar
  5. Bony S, Dufresne J-L, Le Treut H, Morcette J-J, Senior C (2004) On dynamic and thermodynamic components of cloud changes. Clim Dyn 22:71–86CrossRefGoogle Scholar
  6. Bony S, Colman R, Kattsov VM, Allan RP, Bretherton CS, Dufresne J-L, Hall A, Hallegatte S, Holland MM, Ingram W, Randall DA, Soden BJ, Tselioudis G, Webb MJ (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482CrossRefGoogle Scholar
  7. Boutle IA, Abel SJ, Hill PG, Morcrette CJ (2014) Spatial variability of liquid cloud and rain: observations and microphysical effects. Q J R Meteorol Soc 140:583–594. doi: 10.1002/qj.2140 CrossRefGoogle Scholar
  8. Brient F, Bony S (2012) How may the low-cloud radiative properties simulated in the current climate influence the low-cloud feedbacks under global warming? Geophys Res Lett 39:L20807. doi: 10.1029/2012GL053265 CrossRefGoogle Scholar
  9. Cesana G, Chepfer H (2013) Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO-GOCCP. Geophys Res Lett 118:7922–7937. doi: 10.1002/jgrd.50376 Google Scholar
  10. Chepfer H, Minnis P, Young D, Nguyen L, Arduini RF (2002) Retrieval of cirrus cloud ice crystal shapes using visible reflectances from dual-satellite measurements. J Geophys Res. doi: 10.1029/2000JD000240 Google Scholar
  11. Chepfer H, Bony S, Winker D, Chiriaco M, Dufresne J-L, Sèze G (2008) Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys Res Lett 35:L15704. doi: 10.1029/2008GL034207 CrossRefGoogle Scholar
  12. Chepfer H, Bony S, Winker D, Cesana G, Dufresne J-L, Minnis P, Stubenrauch CJ, Zeng S (2010) The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP). J Geophys Res 115:D00H16. doi: 10.1029/2009JD012251 CrossRefGoogle Scholar
  13. Coakley JA, Friedman MA, Tahnk WR (2005) Retrievals of cloud properties for partly cloudy imager pixels. J Atmos Ocean Technol 22:3–17CrossRefGoogle Scholar
  14. Cole J, Barker HW, Loeb NG, von Salzen K (2011) Assessing simulated clouds and radiative fluxes using properties of clouds whose tops are exposed to space. J Clim 24:2715–2727. doi: 10.1175/2011JCLI3652.1 CrossRefGoogle Scholar
  15. Colman R, McAvaney BJ (1997) A study of general circulation model climate feedbacks determined from perturbed SST experiments. J Geophys Res 102:19383–19402CrossRefGoogle Scholar
  16. De Haan J, Bosma PB, Hovenier JW (1986) The adding method for multiple scattering of polarized light. Astron Astrophys 183:371–391Google Scholar
  17. Deschamps P-Y, Bréon F-M, Leroy M, Podaire A, Brickaud A, Buriez J-C, Sèze G (1994) The POLDER mission: instrument characteristics and scientific objectives. IEEE 32:598–615Google Scholar
  18. Dufresne J-L et al (2013) Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim Dyn 40(9–10):2123–2165. doi: 10.1007/s00382-012-1636-1 CrossRefGoogle Scholar
  19. Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335CrossRefGoogle Scholar
  20. Fougnie B, Bracco G, Lafrance B, Ruffel C, Hagolle O, Tinel C (2007) PARASOL in-flight calibration and performance. Appl Opt 46:5435–5451CrossRefGoogle Scholar
  21. Grandpeix J-Y, Lafore J-P (2010) A density current parametrization coupled with Emanuel’s convection scheme. Part I: the models. J Atmos Sci 67:881–897CrossRefGoogle Scholar
  22. Hale GM, Querry MR (1973) Optical constants of water in the 200 nm to 200 mm wavelength region. Appl Opt 12:555–563CrossRefGoogle Scholar
  23. Haynes JM, Marchand RT, Luo Z, Bodas-Salcedo A, Stephens GL (2007) A multipurpose radar simulation package: QuickBeam. Bull Am Meteorol Soc 88:1723–1727CrossRefGoogle Scholar
  24. Hourdin F, Mousat I, Bony S, Braconnot P, Cordon F, Dufresne J-L, Fairhead L, Filiberti M-A, Friedlingstein P, Grandpeix J-Y, Krinner G, Le Van P, Li Z-X, Lott F (2006) The LMDZ general circulation model: climate performance and sensitivity to parameterized physics with emphasis on tropical convection. Clim Dyn 19(15):3445–3482. doi: 10.1007/s00382-006-0158-0 CrossRefGoogle Scholar
  25. Hourdin F, Foujols MA, Codron F, Guemas V, Dufresne J-L, Bony S, Denvil S, Guez L, Lott F, Gatthas J, Braconnot P, Marti O, Meurdesoif Y, Bopp L (2013a) From LMDZ4 to LMDZ5: impact of the atmospheric model grid configuration on the climate and sensitivity of IPSL climate model. Clim Dyn 40(9–10):2167–2192. doi: 10.1007/s00382-012-1411-3 CrossRefGoogle Scholar
  26. Hourdin F, Grandpeix J-Y, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I, Dufresne J-L, Lefebvre M-P, Lahellec A, Roehrig R (2013b) From LMDZ5A to LMDZ5B: revisiting the parameterizations of clouds and convection in the atmosperic component of the IPSL-CM5 climate model. Clim Dyn 40(9–10):2193–2222. doi: 10.1007/s00382-012-1343-y CrossRefGoogle Scholar
  27. Jakob C, Tselioudis G (2003) Objective identification of cloud regimes in the tropical western Pacific. Geophys Res Lett 30(21):2082. doi: 10.1029/2003GL018367 CrossRefGoogle Scholar
  28. Jam A, Hourdin F, Rio C, Couvreux F (2011) Resolved versus parametrized boundary-layer plumes. Part iii: a diagnostic boundary-layer cloud parameterization derived from large eddy simulations, B.L.M. (submitted)Google Scholar
  29. Kawai H, Texeira J (2012) Probability density functions of liquid water path and total water content of marine boundary layer clouds: implications for cloud parameterization. J Clim 25:2162–2177. doi: 10.1175/JCLI-D-11-00117.1 CrossRefGoogle Scholar
  30. Klein SA, Jacob C (1999) Validation and sensitivities of frontal clouds simulated by the ECMWF model. Mon Weather Rev 127:2514–2531CrossRefGoogle Scholar
  31. Klein SA, Zhang Y, Zelinka MD, Pincus R, Boyle J, Gleckler PJ (2013) Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J Geophys Res Atmos 118:1329–1342. doi: 10.1002/jgrd.50141 CrossRefGoogle Scholar
  32. Konsta D, Chepfer H, Dufresne J-L (2012) A process oriented representation of tropical oceanic clouds for climate model evaluation, based on a statistical analysis of daytime A-train high spatial resolution observations. Clim Dyn 39(9–10):2091–2108. doi: 10.1007/s00382-012-1533-7 CrossRefGoogle Scholar
  33. Li J, Dobbie S, Raisanen P, Min Q (2005) Accounting for unresolved clouds in a 1-D solar radiative transfer model. Q J R Meteorol Soc 131:1607–1629CrossRefGoogle Scholar
  34. Liu Z, Omar A, Vaughan M, Hair J, Kittaka C, Hu Y, Powell K, Trepte C, Winker D, Hostetler C, Ferrare R, Pierce R (2008) CALIPSO lidar observations of the optical properties of Saharan dust: a case study of lomg-range transport. J Geophys Res 113:D07207. doi: 10.1029/2007JD008878 Google Scholar
  35. Loeb NG, Wielicki BA, Doelling DR, Smith GL, Keyes DF, Kato S, Manalo-Smith N, Wong T (2009) Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J Clim 22(3):748–766. doi: 10.1175/2008JCLI2637.1 CrossRefGoogle Scholar
  36. Mace GG, Wrenn FJ (2013) Evaluation of the hydrometeor layers in the east and west Pacific within ISCCP cloud-top pressure-optical depth bins using merged CloudSat and CALIPSO data. J Clim 26:9429–9444CrossRefGoogle Scholar
  37. Marchand R, Haynes J, Mace GG, Ackerman T, Stephens G (2009) A comparison of simulated cloud radar output from the multiscale modeling framework global climate model with CloudSat cloud radar observations. J Geophys Res 114:D00A20. doi: 10.1029/2008JD009790 CrossRefGoogle Scholar
  38. Marti O, Braconnot P, Dufresne J-L, Bellier J, Benshila R, Bony S, Caudel A, Cordon F, de Noblet N, Denvil S, Fairhead L, Fichefet T, Foujols M-A, Friedlingstein P, Goosse H, Grandpeix J-Y, Guilyardi E, Hourdin F, Idelkadi A, Kageyama M, Krinner G, Levy C, Madec G, Mignot J, Musat I, Swingedow D, Talandier C (2010) Key features of the IPSL ocean atmosphere model and its sensitivity to atmospheric resolution. Clim Dyn 34:1–26CrossRefGoogle Scholar
  39. Martins E, Noel V, Chepfer H (2011) Properties of cirrus and subvisible cirrus from CALIOP, related to atmospheric dynamics and water vapor. J Geophys Res 116:D02208CrossRefGoogle Scholar
  40. Medeiros B, Stevens B (2011) Revealing differences in GCM representations of low clouds. Clim Dyn 36:385–399CrossRefGoogle Scholar
  41. Medeiros B, Nuijens L, Antoniazzi C, Stevens B (2010) Low-latitude boundary layer clouds as seen by CALIPSO. J Geophys Res 115:D23207. doi: 10.1029/2010JD014437 CrossRefGoogle Scholar
  42. Minnis P, Smith Jr. WL, Garber DP, Ayers JK, Doelling DR (1995) Cloud properties derived from GOES-7 for the spring 1994 ARM intensive observing period using version 1.0.0 of the ARM satellite data analysis program. NASA RP 1366, 59Google Scholar
  43. Neggers RAJ, Heus T, Siebesma AP (2011) Overlap statistics of cumuliform boundary-layer cloud fields in large-eddy simulations. J Geophys Res 116(D21). doi: 10.1029/2011JD015650 Google Scholar
  44. Nam C, Bony S, Dufresne J-L, Chepfer H (2012) The “too few, too bright” tropical low-cloud problem in CMIP5 models. Geophys Res Lett 39(21):L21801. doi: 10.1029/2012GL053421 CrossRefGoogle Scholar
  45. Noel V, Chepfer H (2010) A global view of horizontally-oriented crystals in ice clouds from CALIPSO. J Geophys Res 115:D012365CrossRefGoogle Scholar
  46. Noel V, Hertzog A, Chepfer H, Winker DM (2008) Polar stratospheric clouds over Antarctica from the CALIOP spaceborn lidar. J Geophys Res 113:D02205. doi: 10.1029/2007JD008616 CrossRefGoogle Scholar
  47. Parol F, Buriez JC, Vanbauce C, Riedi J, Labonnote LC, Doutriaux-Boucher M, Vesperini M, Sèze G, Couvert P, Viollier M, Bréon FM (2004) Capabilities of multi-angle polarization cloud measurements from satellite: POLDER results. Adv Space Res 33:1080–1088CrossRefGoogle Scholar
  48. Pincus R, Klein SA (2000) Unresolved spatial variability and microphysical process rates in large-scale models. J Geophys Res 105(D22):27059–27065CrossRefGoogle Scholar
  49. Pitts MC, Thomason LW, Poole LR, Winker DM (2007) Characterization of polar stratospheric clouds with space-borne lidar: CALIPSO and the 2006 Antarctic season. Atmos Chem Phys Discuss 7:7933–7985CrossRefGoogle Scholar
  50. Rio C, Hourdin F (2008) A thermal plume model for the convective boundary layer: representation of cumulus clouds. J Atmos Sci 65:407–425CrossRefGoogle Scholar
  51. Rio C, Hourdin F, Couvreux F, Jam A (2010) Resolved versus parametrized boundary-layer plumes. Part II: continuous formulations of mixing rates for mass-flux schemes. Bound Layer Meteorol 135:469–483. doi: 10.1007/s10546-010-9478-z CrossRefGoogle Scholar
  52. Rio C, Grandpeix J-Y, Hourdin F, Guichard F, Couvreux F, Lafore J-P, Fridlind A, Mrowiec A, Roehrig R, Rochetin N, Lefebvre M-P, Idelkadi A (2013) Control of deep convection by sub-cloud lifting processes: the ALP closure in the LMDZ5B general circulation model. Clim Dyn 40:2271–2292. doi: 10.1007/s00382-012-1506-x CrossRefGoogle Scholar
  53. Rossow WB, Schiffer RA (1991) ISCCP cloud data products. Bull Am Meteorol Soc 72:2–20CrossRefGoogle Scholar
  54. Rossow WB, Tselioudis G, Polak A, Jakob C (2005) Tropical climate described as a distribution of weather states indicated by distinct mesoscale cloud property mixtures. Geophys Res Lett 32:L21812. doi: 10.1029/2005GL024584 CrossRefGoogle Scholar
  55. Sassen K, Wang Z, Liu D (2008) Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol lidar and infrared pathfinder satellite observations (CALIPSO) measurements. J Geophys Res 113:D00A12. doi: 10.1029/2008JD009972 CrossRefGoogle Scholar
  56. Siebesma AP, Bretherton CS, Brown A, Chlond A, Cuxart J, Duynkerke PG, Jiang H, Khairoutdinov M, Lewellen D, Moeng C-H, Sanchez E, Stevens B, Stevens DE (2003) A large-eddy simulation intercomparison study of shallow cumulus convection. J Atmos Sci 60:1201–1219CrossRefGoogle Scholar
  57. Simmons A, Uppala S, Dee D, Kobayashi S (2007) ERA-interim: new ECMWF reanalysis products from 1989 onwards. ECMWF Newsl 110:29–35Google Scholar
  58. Soden BJ, Held IM (2006) An assessment of climatee feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360CrossRefGoogle Scholar
  59. Stubenrauch C, Rossow W, Kinne S (2012) Assessment of global cloud data sets from satellites, a project of the World Climate Research Programme Global Energy and Water cycle Experiment (GEWEX) Radiation Panel, WCRP report no. 23/2012Google Scholar
  60. Vial J, Dufresne J-L, Bony S (2013) On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim Dyn 41:3339–3362. doi: 10.1007/s00382-013-1725-9 CrossRefGoogle Scholar
  61. Vuolo RM, Chepfer H, Menut L, Cesana G (2009) Comparison of mineral dust layers vertical structures modeled with CHIMERE-DUST and observed with the CALIOP lidar. J Geophys Res 114:D09214. doi: 10.1029/2008JD011219 CrossRefGoogle Scholar
  62. Warren SG (1984) Optical constants of ice from the ultraviolet to the microwave. Appl Opt 23:1206–1225CrossRefGoogle Scholar
  63. Webb M, Senior C, Bony S, Morcrette J-J (2001) Combining ERBE and ISCCP data to assess clouds in three climate models. Clim Dyn 17:905–922CrossRefGoogle Scholar
  64. Webb MJ, Senior CA, Sexton DMH, Ingram WJ, Williams KD, Ringer MA, McAvaney BJ, Colman R, Soden BJ, Gudgel R, Knutson T, Emori S, Ogura T, Tsushima Y, Andronova NG, Li B, Musat I, Bony S, Taylor KE (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in the two GCM ensembles. Clim Dyn 27:17–38. doi: 10.1007/s00382-006-0111-2 CrossRefGoogle Scholar
  65. Wielicki BA, Barkstrom BR, Harrison EF, Lee RB III, Smith GL, Cooper JE (1996) Cloud's and the Earth's Radiant Energy System (CERES): an Earth observing system experiment. Bull Am Meteorol Soc 77:853–868CrossRefGoogle Scholar
  66. Williams KD, Tselioudis G (2007) GCM intercomparison of global cloud regimes: present-day evaluation and climate change response. Clim Dyn 29:231–250. doi: 10.1007/s00382-007-0232-2 CrossRefGoogle Scholar
  67. Winker D, Hunt W, McGill M (2007) Initial performance assessment of CALIOP. Geophys Res Lett 34:L19803. doi: 10.1029/2007GL030135 CrossRefGoogle Scholar
  68. Yang P, Liou KN, Wyser K, Mitchell D (2000) Parameterization of the scattering and absorption properties of individual ice crystals. J Geophys Res 105:4699–4718CrossRefGoogle Scholar
  69. Yang P, Gao B-C, Baum BA, Wiscombe WJ, Hu YX, Nasiri SL, Soulen PF, Heymsfield AJ, Mc Farquhar GM, Miloshevich LM (2001) Sensitivity of cirrus bidirectional reflectance to vertical inhomogeneity of ice crystal habits and size distributions for two Moderate-Resolution Imaging Spectroradiometer (MODIS) bands. J Geophys Res 106:17267–17291CrossRefGoogle Scholar
  70. Yu W, Doutriaux M, Seze G, Le Treut H, Desbois M (1996) A methodology study of the validation of clouds in GCMs using ISCCP satellite observations. Clim Dyn 12:389–401CrossRefGoogle Scholar
  71. Zhang MH, Lin WY, Klein SA, Bacmeister JT, Bony S, Cederwall RT, Del Genio AD, Hack JJ, Loeb NG, Lohmann U, Minnis P, Musat I, Pincus R, Stier P, Webb MJ, Wu JJB, Xie SC, Yao M-S, Zhang JH (2005) Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J Geophys Res 110:D15S02. doi: 10.1029/2004JD005021 Google Scholar
  72. Zhang Y, Klein SA, Boyle J, Mace GG (2010) Evaluation of tropical cloud and precipitation statistics of Community Atmosphere Model version 3 using CloudSat and CALIPSO data. J Geophys Res 115:D12205. doi: 10.1029/2009JD012006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. Konsta
    • 1
  • J.-L. Dufresne
    • 2
  • H. Chepfer
    • 2
  • A. Idelkadi
    • 2
  • G. Cesana
    • 1
  1. 1.Laboratoire de Météorologie Dynamique (LMD), Ecole PolytechniquePalaiseauFrance
  2. 2.LMD/IPSL, CNRSUniversité Pierre et Marie CurieParisFrance

Personalised recommendations