Climate Dynamics

, Volume 47, Issue 3–4, pp 1211–1224 | Cite as

Tropical atmospheric response to decadal changes in the Atlantic Equatorial Mode

  • T. LosadaEmail author
  • B. Rodríguez-Fonseca


It has been shown that the atmospheric response to the Atlantic Equatorial Mode is non-stationary. After the 1970s, Sea Surface Temperature (SST) anomalies in the tropical Atlantic are able to alter the atmosphere in the tropical Pacific via modifications of the Walker circulation. Such changes could be related to the differences in the background state of the global SSTs before and after the 1970s, but also to changes in the interannual Equatorial Mode itself. In this work we first describe the differences in the interannual Equatorial Mode before and after the 1970s. Then we use two AGCMs to perform different sensitivity experiments changing the spatial structure of the Equatorial Mode, and we explore the differences in the atmospheric response over the tropical Pacific region to each of the SST patterns considered. It is shown that the changes in the Walker Atlantic–Pacific cell produced by the EM are stronger after the 1970s, and are reinforced by the change in the impact of the EM over the Indian Ocean and the Maritime Continent. It is also shown that, although the Atlantic–Pacific connection is established by the aforementioned changes in the Walker circulation between the two basins, the modulation of the Indian sector is crucial for a realistic simulation of such connection by climate models.


Tropical Atlantic Climate variability Equatorial mode Tropical teleconnections 



The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under Grant Agreement No. 603521 (PREFACE Project), and by the Spanish Project CGL2012-38923-C02-01. The authors thank two anonymous reviewers for their constructive suggestions and comments that have improved this work, as well as the editor for his help along the whole process of publication of the paper.


  1. Bjerknes J (1969) Atmospheric teleconnections from the Equatorial Pacific. Mon Weather Rev 97:163–172CrossRefGoogle Scholar
  2. Cassou C, Desert C, Terray L, Hurrell JW, Drévillon M (2004) Summer sea surface temperature conditions in the North Atlantic and their impact upon the atmospheric circulation in early winter. J Clim 17:3349–3363CrossRefGoogle Scholar
  3. Ding H, Keenlyside NS, Latif M (2011) Impact of the Equatorial Atlantic on the El Niño Southern Oscillation. Clim Dyn. doi: 10.1007/s00382-011-1097-y Google Scholar
  4. García-Serrano J, Losada T, Rodríguez-Fonseca B, Polo I (2008) Tropical Atlantic variability modes (1979–2001). Part II: timeevolving atmospheric circulation related to SST-forced. J Clim 21:6476–6497CrossRefGoogle Scholar
  5. Giannini A, Saravanan R, Chan P (2004) The preconditioning role of Tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Clim Dyn 22:839–855CrossRefGoogle Scholar
  6. Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462CrossRefGoogle Scholar
  7. Janicot S (1992) Spatiotemporal variability of West African rainfall. Part II: associated surface and airmass characteristics. J Clim 5:499–511CrossRefGoogle Scholar
  8. Janicot S, Harzallah A, Fontaine B, Moron V (1998) West African monsoon dynamics and eastern equatorial Atlantic and Pacific SST anomalies (1970–88). J Clim 11:1874–1882CrossRefGoogle Scholar
  9. Jansen MF, Dommenget D, Keenlyside NS (2009) Tropical Atmosphere-Ocean interactions in a conceptual framework. J Clim 22:550–567CrossRefGoogle Scholar
  10. Jin FF (1997) An equatorial recharge paradigm for ENSO I: conceptual Model. J Atmos Sci 54:811–829CrossRefGoogle Scholar
  11. Keenlyside NS, Latif M (2007) Understanding equatorial Atlantic interannual variability. J Clim 20:131–142CrossRefGoogle Scholar
  12. Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Niño prediction. Geophys Res Lett 40:2278–2283. doi: 10.1002/grl.50362 CrossRefGoogle Scholar
  13. Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett. doi: 10.1029/2005GL024233 Google Scholar
  14. Kucharski F, Bracco A, Yoo JH, Molteni F (2007) Low-frequency variability of the Indian Monsoon–ENSO relationship and the Tropical Atlantic: the “Weakening” of the 1980s and 1990s. J Clim 20:4255–4266CrossRefGoogle Scholar
  15. Kucharski F, Bracco A, Yoo JH, Molteni F (2008) Atlantic forced component of the Indian monsoon interannual variability. Geophys Res Lett 35:L04706. doi: 10.1029/2007GL033037 CrossRefGoogle Scholar
  16. Kucharski F, Bracco A, Yoo JH, Molteni F (2009) A Gill–Matsuno-type mechanism explains the tropical Atlantic influence on African and Indian monsoon rainfall. Q J R Meteorol Soc 135:569–579CrossRefGoogle Scholar
  17. López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39:L02704. doi: 10.1029/2011GL050049 CrossRefGoogle Scholar
  18. Losada T, Rodríguez-Fonseca B, Janicot S, Gervois S, Chauvin F, Ruti P (2010a) A multi-model approach to the Atlantic Equatorial Mode: impact on the West African monsoon. Clim Dyn 35:29–43CrossRefGoogle Scholar
  19. Losada T, Rodríguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010b) Tropical response to the Atlantic Equatorial Mode: AGCM multimodel approach. Clim Dyn 35:45–52CrossRefGoogle Scholar
  20. Losada T, Rodríguez-Fonseca B, Mohino E, Bader J, Janicot S, Mechoso CR (2012a) Tropical SST and Sahel rainfall: a non-stationary relationship. Geophys Res Lett 39:L12705. doi: 10.1029/2012GL052423 CrossRefGoogle Scholar
  21. Losada T, Rodríguez-Fonseca B, Kucharski F (2012b) Tropical influence on the summer Mediterranean climate. Atmos Sci Lett 13:36–42CrossRefGoogle Scholar
  22. Martín-Rey M, Polo I, Rodríguez-Fonseca B, Kucharski F (2012) Changes in the interannual variability of the Tropical Pacific related to the equatorial Atlantic. Sci Mar 76:105–116. doi: 10.3989/scimar.03610.19a CrossRefGoogle Scholar
  23. Martín-Rey M, Polo I, Rodríguez-Fonseca B, Polo I, Kucharski F (2014) On the Atlantic–Pacific Niños connection: a multidecadal modulated mode. Clim Dyn 43:3163–3178. doi: 10.1007/s00382-014-2305-3 CrossRefGoogle Scholar
  24. Mechoso CR, Yu JY, Arakawa A (2000) A coupled GCM pilgrimage: from climate catastrophe to ENSO simulations. In: Randall DA (ed) General circulation model development: past, present and future. Proceedings of a symposium in honor of Professor Akio Arakawa. Academic, New York, pp 539–575CrossRefGoogle Scholar
  25. Mohino E, Rodríguez-Fonseca B, Losada T, Gervois S, Janicot S, Bader J, Ruti P, Chauvin F (2011) Changes in the intereannual SST-forced signals on West African rainfall. AGCM intercomparison. Clim Dyn 37:1707–1725CrossRefGoogle Scholar
  26. Nnamchi HC, Li J, Anyadike RNC (2011) Does a dipole mode really exist in the South Atlantic Ocean? J Geophys Res 116:D15104. doi: 10.1029/2010JD015579 CrossRefGoogle Scholar
  27. Ott I, Romberg K, Jacobeit J (2015) Teleconnections of the tropical Atlantic and Pacific Oceans in a CMIP5 model ensemble. Clim Dyn 44:3043–3055CrossRefGoogle Scholar
  28. Polo I, Rodríguez-Fonseca B, Losada T, García-Serrano J (2008) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African precipitation. J Clim 21:6457–6475CrossRefGoogle Scholar
  29. Polo I, Martin-Rey M, Rodriguez-Fonseca B, Kucharski F, Mechoso CR (2015) Processes in the Pacific La Niña onset triggered by the Atlantic Niño. Clim Dyn 44:115–131CrossRefGoogle Scholar
  30. Richter I, Mechoso CR, Robertson AW (2008) What determines the position and intensity of the south Atlantic anticyclone in Austral Winter? An AGCM study. J Clim 21:214–229CrossRefGoogle Scholar
  31. Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagata T (2012) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6:43–47. doi: 10.1038/ngeo1660 Google Scholar
  32. Rodriguez-Fonseca B, Polo I, Garcia-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Ninos enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi: 10.1029/2009GL040048 CrossRefGoogle Scholar
  33. Rowell DP, Folland CK, Maskel K, Owen JA, Ward MN (1995) Variability of the summer rainfall over tropical North Africa (1906–92): observations and modeling. Q J R Meteorol Soc 121:669–704. doi: 10.1002/qj.49712152311 Google Scholar
  34. Ruiz-Barradas A, Carton JA, Nigam S (2000) Structure of interannual-to-decadal climate variability in the Tropical Atlantic sector. J Clim 13:3285–3297CrossRefGoogle Scholar
  35. Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperatura analysis (1880–2006). J Clim 21:2283–2296. doi: 10.1175/2007JCLI2100.1 CrossRefGoogle Scholar
  36. Stephenson DB, Pavan V, Bojariu R (2000) Is the North Atlantic Oscillation a random walk? Int J Climatol 20:1–18. doi: 10.1002/(SICI)1097-0088(200001)20:1<1:AID-JOC456>3.0.CO;2-P CrossRefGoogle Scholar
  37. Vizy EK, Cook KH (2002) Development and application of a mesoscale climate model for the tropics: influence of sea surface temperature anomalies on the West African monsoon. J Geophys Res. doi: 10.1029/2001JD000686 Google Scholar
  38. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, New York. ISBN 0521450713CrossRefGoogle Scholar
  39. Wang C (2006) An overlooked feature of tropical climate: inter-Pacific–Atlantic variability. Geophys Res Lett 33:L12702. doi: 10.1029/2006GL026324 CrossRefGoogle Scholar
  40. Wang C, Kucharski F, Barimalala R, Bracco A (2009) Teleconnections of the Tropical Atlantic to the Tropical Indian and Pacific Oceans: a review of recent findings. Spec Issue Meteorol Z. doi: 10.1127/0941-2948/2009/0394 Google Scholar
  41. Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts. In: Wang C et al (eds) Earth climate: the ocean–atmosphere interaction. Geophys Monogr, vol 147. American Geophysical Union, pp 121–142Google Scholar
  42. Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586CrossRefGoogle Scholar
  43. Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability:1900–93. J Clim 10:1004–1020CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Departamento de Física de La Tierra, Astronomía y Astrofísica IUCMMadridSpain
  2. 2.Instituto de Geociencias (CSIC-UCM), Facultad de CC. FísicasMadridSpain

Personalised recommendations